Chinese Journal of Oceanology and Limnology

, Volume 35, Issue 6, pp 1362–1373 | Cite as

Environmental change and its effects on inter-decadal variations of diatom production, species composition and frustule dissolution in a coastal marginal sea

  • Rediat Abate
  • Yahui Gao (高亚辉)
  • Changping Chen (陈长平)
  • Junrong Liang (梁君荣)
  • Weifang Chen (陈蔚芳)
  • Lin Sun (孙琳)
  • Demeke Kifile


The implications of climate change during the second half of the 20th century have been reported throughout the world. Although marginal seas are sensitive to climate change and anthropogenic impacts, relatively little attention has been given to the South East Asian marginal seas. Thus, to bridge this gap in knowledge, a sediment core was collected from the coastal areas of the Leizhou Peninsula in the South China Sea (SCS) to study the inter-decadal climate change and its consequences using diatom species composition as a proxy record. Diatom absolute abundance varied from 2300 to 68000 and averaged 16000 valves per gram of dry weight (v/gdw). The fractional dissolution index (Fi) was usually below 0.5, which indicates low to moderate preservation of diatom valves at coastal area of the SCS. At the inter-decadal time scale, total diatom abundance was high for the period after 1972, which coincided with 1) increased percentage of planktonic diatom abundance and Fi; 2) emergence and dominance of high productivity indicative cosmopolitan species such as Thalassionema nitzschioides and Paralia sulcata (their relative abundance increased from <1.5% to >7% for the period before and after 1972, respectively); 3) decreased relative abundance of the small-sized eutrophication indicative species, Cyclotella striata, from 70% to 40%. This study reveals that variations in the abundance of diatoms preserved in the sediment was a function of both production and dissolution/preservation of diatom valves, which in turn was intimately connected to the prevailing environmental/climatic conditions. In conclusion, these data reveal the existence of substantial changes in the coastal SCS in response to the 1970s climate shift that was recorded in different parts of the world.


benthic diatoms dissolution index planktonic diatoms primary productivity South China Sea 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abrantes F. 1988. Diatom assemblages as upwelling indicators in surface sediments offPortugal. Marine Geology, 85 (1): 15–39.CrossRefGoogle Scholar
  2. Appleby P G, Oldfield F. 1978. The calculation of lead-210 dates assuming a constant rate of supply of unsupported 210 Pb to the sediment. Catena, 5 (1): 1–8.CrossRefGoogle Scholar
  3. Armand L K, Crosta X, Quéguiner B, Mosseri J, Garcia N. 2008. Diatoms preserved in surface sediments of the northeastern Kerguelen Plateau. Deep Sea Research Part II: Topical Studies in Oceanography, 55 (5-7): 677–692.CrossRefGoogle Scholar
  4. Bárcena M A, Abrantes F. 1998. Evidence of a highproductivity area offthe coast of Málaga from studies of diatoms in surface sediments. Marine Micropaleontology, 35 (1-2): 91–103.CrossRefGoogle Scholar
  5. Bauer A, Radziejewska T, Liang K, Kowalski N, Dellwig O, Bosselmann K, Stark A, Xia Z, Harff J, Böttcher M E, Schulz-Bull D E, Waniek J J. 2013. Regional differences of hydrographical and sedimentological properties in the Beibu Gulf, South China Sea. Journal of Coastal Research, (S66): 49–71.CrossRefGoogle Scholar
  6. Bauer A. 2012. Hydrographical and biogeochemical characterization of the Beibu Gulf, South China Sea. der Mathematisch-Naturwissenschaftlichen Fakultät, der Universität Rostock, Rostock. 146p.Google Scholar
  7. Belkin I M. 2009. Rapid warming of large marine ecosystems. Progress in Oceanography, 81 (1-4): 207–213.CrossRefGoogle Scholar
  8. Bianchi T S, Engelhaupt E, McKee B A, Miles S, Elmgren R, Hajdu S, Savage C, Baskaran M. 2002. Do sediments from coastal sites accurately reflect time trends in water column phytoplankton? A test from Himmerfjärden Bay (Baltic Sea proper). Limnology and Oceanography, 47 (5): 1537–1544.CrossRefGoogle Scholar
  9. Boer W, Van den Bergh G, De Haas H, De Stigter H, Gieles R, Van Weering T C. 2006. Validation of accumulation rates in Teluk Banten (Indonesia) from commonly applied 210 Pb models, using the 1883 Krakatau tephra as time marker. Marine Geology, 227 (3): 263–277.CrossRefGoogle Scholar
  10. Brush G S. 2009. Historical land use, nitrogen, and coastal eutrophication: a paleoecological perspective. Estuaries and Coasts, 32 (1): 18–28.CrossRefGoogle Scholar
  11. Cai W J, Dai M H, Wang Y C, Zhai W D, Huang T, Chen S T, Zhang F, Chen Z Z, Wang Z H. 2004. The biogeochemistry of inorganic carbon and nutrients in the Pearl River estuary and the adjacent Northern South China Sea. Continental Shelf Research, 24 (12): 1301–1319.CrossRefGoogle Scholar
  12. Cheng F J, Yu Z M, Song X X. 2014. Long-term changes in sedimentary diatom assemblages and their environmental implications in the Changjiang (Yangtze) River estuary, China. Chinese Journal of Oceanology and Limnology, 32 (1): 155–161.CrossRefGoogle Scholar
  13. Cheng Z D, Gao Y H, Liu S C, Wang D Z, Chen C P, Liang J R, Qi Y Z. 2013. Flora Algarum Marinarum Sinicarum: Tomus V. Bacillariophyta, No. II. Pennatae I, Diatomales, Achnanthales, Phaeodactylales, Eunotiales. Science Press, Beijing. 137p. (in Chinese)Google Scholar
  14. Finkelstein S A, Gajewski K. 2007. A palaeolimnological record of diatom-community dynamics and late-Holocene climatic changes from Prescott Island, Nunavut, central Canadian Arctic. The Holocene, 17 (6): 803–812.CrossRefGoogle Scholar
  15. Gebühr C, Wiltshire K H, Aberle N, van Beusekom J E, Gerdts G. 2009. Influence of nutrients, temperature, light and salinity on the occurrence of Paralia sulcata at Helgoland Roads, North Sea. Aquatic Biology, 7 (3): 185–197.CrossRefGoogle Scholar
  16. Giani M, Djakovac T, Degobbis D, Cozzi S, Solidoro C, Umani S F. 2012. Recent changes in the marine ecosystems of the northern Adriatic Sea. Estuarine, Coastal and Shelf Science, 115: 1–13.CrossRefGoogle Scholar
  17. Guo Y, Qian S. 1984. Flora Algarum Marinarum Sinicarum (Tomus V) Bacillariophyta (No. I) Centricea. Science Press, Beijing, China. (in Chinese)Google Scholar
  18. Harrison P J, Yin K, Lee J H W, Gan J P, Liu H B. 2008. Physical-biological coupling in the Pearl River Estuary. Continental Shelf Research, 28 (12): 1405–1415.CrossRefGoogle Scholar
  19. Hill M O, Bunce R G H, Shaw M W. 1975. Indicator Species Analysis, a divisive polythetic method of classification, and its application to a survey of native pinewoods in scotland. The Journal of Ecology, 63 (2): 597–613.CrossRefGoogle Scholar
  20. Hill M O, Šmilauer P. 2005. TWINSPAN for Windows Version 2.3. Software and user Guide. Centre for Ecology and Hydrology, University of South Bohemia, Huntingdon, Ceske Budejovice.Google Scholar
  21. Hinder S L, Hays G C, Edwards M, Roberts E C, Walne A W, Gravenor M B. 2012. Changes in marine dinoflagellate and diatom abundance under climate change. Nature Climate Change, 2 (4): 271–275.CrossRefGoogle Scholar
  22. Hu J F, Sun X S, Peng P A, Zhang G, Chivas A R. 2009. Spatial and temporal variation of organic carbon in the northern South China Sea revealed by sedimentary records. Quaternary International, 206 (1-2): 46–51.CrossRefGoogle Scholar
  23. Hu J Y, Kawamura H, Tang D L. 2003. Tidal front around the Hainan Island, northwest of the South China Sea. Journal of Geophysical Research: Oceans, 108 (C11): 3342.CrossRefGoogle Scholar
  24. Huang L M, Jian W J, Song X Y, Huang X P, Liu S, Qian P Y, Yin K D, Wu M. 2004. Species diversity and distribution for phytoplankton of the Pearl River estuary during rainy and dry seasons. Marine Pollution Bulletin, 49 (7-8): 588–596.CrossRefGoogle Scholar
  25. Huang Y, Jiang H, Svante B, Li T G, Lv H Y, Ran L H. 2009. Surface sediment diatoms from the western Pacific marginal seas and their correlation to environmental variables. Chinese Journal of Oceanology and Limnology, 27 (3): 674–682.CrossRefGoogle Scholar
  26. Huh C A, Su C C. 1999. Sedimentation dynamics in the East China Sea elucidated from 210Pb, 137Cs and 239, 240 Pu. Marine Geology, 160 (1-2): 183–196.CrossRefGoogle Scholar
  27. Itoh S, Yasuda I, Nishikawa H, Sasaki H, Sasai Y. 2009. Transport and environmental temperature variability of eggs and larvae of the Japanese anchovy (Engraulis japonicus) and Japanese sardine (Sardinops melanostictus) in the western North Pacific estimated via numerical particle-tracking experiments. Fisheries Oceanography, 18 (2): 118–133.CrossRefGoogle Scholar
  28. Jiang H, Zheng Y L, Ran L H, Seidenkrantz M S. 2004. Diatoms from the surface sediments of the South China Sea and their relationships to modern hydrography. Marine Micropaleontology, 53 (3-4): 279–292.CrossRefGoogle Scholar
  29. Jin D X, Cheng Z D, Lin J M, Liu S C. 1985. The marine benthic diatoms in China. China Ocean Press, Springer-Verlag, Berlin Heidelberg, Beijng. 313p.Google Scholar
  30. Klais R, Tamminen T, Kremp A, Spilling K, Olli K. 2011. Decadal-scale changes of dinoflagellates and diatoms in the anomalous Baltic Sea spring bloom. PLoS One, 6 (6): e21567.CrossRefGoogle Scholar
  31. Kuwae M, Yamashita A, Hayami Y, Kaneda A, Sugimoto T, Inouchi Y, Amano A, Takeoka H. 2006. Sedimentary records of multidecadal-scale variability of diatom productivity in the Bungo Channel, Japan, associated with the Pacific Decadal Oscillation. Journal of Oceanography, 62 (5): 657–666.CrossRefGoogle Scholar
  32. Lee H S, Yamashita T, Mishima T. 2012. Multi-decadal variations of ENSO, the Pacific Decadal Oscillation and tropical cyclones in the western North Pacific. Progress in Oceanography, 105: 67–80.CrossRefGoogle Scholar
  33. Lee V, Olsen S. 1985. Eutrophication and management initiatives for the control of nutrient inputs to Rhode Island coastal lagoons. Estuaries, 8 (2): 191–202.CrossRefGoogle Scholar
  34. Li F, Lin J Q, Liang Y Y, Gan H Y, Zeng X Y, Duan Z P, Liang K, Liu X, Huo Z H, Wu C H. 2014. Coastal surface sediment quality assessment in Leizhou Peninsula (South China Sea) based on SEM-AVS analysis. Marine Pollution Bulletin, 84 (1-2): 424–436.CrossRefGoogle Scholar
  35. Liu K K, Chao S Y, Shaw P T, Gong G C, Chen C C, Tang T Y. 2002. Monsoon-forced chlorophyll distribution and primary production in the South China Sea: observations and a numerical study. Deep Sea Research Part I: Oceanographic Research Papers, 49 (8): 1387–1412.CrossRefGoogle Scholar
  36. Liu Y, Peng Z C, Chen T G, Wei G J, Sun W D, Sun R Y, He J F, Liu G J, Chou C L, Zartman R E. 2008. The decline of winter monsoon velocity in the South China Sea through the 20th century: evidence from the Sr/Ca records in corals. Global and Planetary Change, 63 (1): 79–85.CrossRefGoogle Scholar
  37. Menge B A, Chan F, Nielsen K J, Lorenzo E D, Lubchenco J. 2009. Climatic variation alters supply-side ecology: impact of climate patterns on phytoplankton and mussel recruitment. Ecological Monographs, 79 (3): 379–395.CrossRefGoogle Scholar
  38. Miller K R, Chapman M R, Andrews J E, Koç N. 2011. Diatom phytoplankton response to Holocene climate change in the Subpolar North Atlantic. Global and Planetary Change, 79 (3-4): 214–225.CrossRefGoogle Scholar
  39. Montes-Hugo M, Doney S C, Ducklow H W, Fraser W, Martinson D, Stammerjohn S E, Schofield O. 2009. Recent changes in phytoplankton communities associated with rapid regional climate change along the Western Antarctic peninsula. Science, 323 (5920): 1470–1473.CrossRefGoogle Scholar
  40. Nave S, Freitas P, Abrantes F. 2001. Coastal upwelling in the Canary Island region: spatial variability reflected by the surface sediment diatom record. Marine Micropaleontology, 42 (1-2): 1–23.CrossRefGoogle Scholar
  41. Oey L Y, Chang M C, Chang Y L, Lin Y C, Xu F H. 2013. Decadal warming of coastal China Seas and coupling with winter monsoon and currents. Geophysical Research Letters, 40 (23): 6288–6292.CrossRefGoogle Scholar
  42. Perren B B, Douglas M S V, Anderson N J. 2009. Diatoms reveal complex spatial and temporal patterns of recent limnological change in West Greenland. Journal of Paleolimnology, 42 (2): 233–247.CrossRefGoogle Scholar
  43. Qiu D J, Huang L M, Zhang J L, Lin S J. 2010. Phytoplankton dynamics in and near the highly eutrophic Pearl River Estuary, South China Sea. Continental Shelf Research, 30 (2): 177–186.CrossRefGoogle Scholar
  44. Renberg I. 1990. A procedure for preparing large sets of diatom slides from sediment cores. Journal of Paleolimnology, 4 (1): 87–90.CrossRefGoogle Scholar
  45. Romero O, Hebbeln D. 2003. Biogenic silica and diatom thanatocoenosis in surface sediments below the Peru-Chile Current: controlling mechanisms and relationship with productivity of surface waters. Marine Micropaleontology, 48 (1-2): 71–90.CrossRefGoogle Scholar
  46. Romero O, Hensen C. 2002. Oceanographic control of biogenic opal and diatoms in surface sediments of the Southwestern Atlantic. Marine Geology, 186 (3-4): 263–280.CrossRefGoogle Scholar
  47. Rosenberg R, Elmgren R, Fleischer S, Jonsson P, Persson G, Dahlin H. 1990. Marine eutrophication case studies in sweden. Ambio, 19 (3): 102–108.Google Scholar
  48. Round F E, Crawford R M, Mann D G. 1990. The Diatoms: Biology & Morphology of the Genera. Cambridge University Press, Cambridge.Google Scholar
  49. Rühland K, Paterson A M, Smol J P. 2008. Hemispheric-scale patterns of climate-related shifts in planktonic diatoms from North American and European lakes. Global Change Biology, 14 (11): 2740–2754.Google Scholar
  50. Ryu E, Lee S J, Yang D Y, Kim J Y. 2008. Paleoenvironmental studies of the Korean peninsula inferred from diatom assemblages. Quaternary International, 176-177: 36–45.CrossRefGoogle Scholar
  51. Ryves D B, Battarbee R W, Fritz S C. 2009. The dilemma of disappearing diatoms: incorporating diatom dissolution data into palaeoenvironmental modelling and reconstruction. Quaternary Science Reviews, 28 (1-2): 120–136.CrossRefGoogle Scholar
  52. Ryves D B, Juggins S, Fritz S C, Battarbee R W. 2001. Experimental diatom dissolution and the quantification of microfossil preservation in sediments. Palaeogeography, Palaeoclimatology, Palaeoecology, 172 (1-2): 99–113.CrossRefGoogle Scholar
  53. Sancetta C. 1982. Distribution of diatom species in surface sediments of the Bering and Okhotsk seas. Micropaleontology, 28 (3): 221–257.CrossRefGoogle Scholar
  54. Sangiorgi F, Donders T H. 2004. Reconstructing 150 years of eutrophication in the north-western Adriatic Sea (Italy) using dinoflagellate cysts, pollen and spores. Estuarine, Coastal and Shelf Science, 60 (1): 69–79.CrossRefGoogle Scholar
  55. Shemesh A, Burckle L H, Froelich P N. 1989. Dissolution and preservation of Antarctic diatoms and the effect on sediment thanatocoenoses. Quaternary Research, 31 (2): 288–308.CrossRefGoogle Scholar
  56. Shuman F R. 1978. The fate of phytoplankton chlorophyll in the euphotic zone: Washington coastal waters. University of Washington, Washington. 250p.Google Scholar
  57. Su C C, Huh C A. 2002. 210Pb, 137Cs and 239, 240Pu in East China Sea sediments: sources, pathways and budgets of sediments and radionuclides. Marine Geology, 183 (1-4): 163–178.CrossRefGoogle Scholar
  58. Swann G E A, Mackay A W. 2006. Potential limitations of biogenic silica as an indicator of abrupt climate change in Lake Baikal, Russia. Journal of Paleolimnology, 36 (1): 81–89.CrossRefGoogle Scholar
  59. Tang D L, Kawamura H, Lee M A, Van Dien T. 2003. Seasonal and spatial distribution of chlorophyll-a concentrations and water conditions in the Gulf of Tonkin, South China Sea. Remote Sensing of Environment, 85 (4): 475–483.CrossRefGoogle Scholar
  60. Trenberth K E, Hurrell J W. 1994. Decadal atmosphere-ocean variations in the Pacific. Climate Dynamics, 9 (6): 303–319.CrossRefGoogle Scholar
  61. Treppke U F, Lange C B, Donner B, Fischer G, Ruhland G, Wefer G. 1996. Diatom and silicoflagellate fluxes at the Walvis Ridge: an environment influenced by coastal upwelling in the Benguela system. Journal of Marine Research, 54 (5): 991–1016.CrossRefGoogle Scholar
  62. Van Iperen J M, Van Weering T C E, Jansen J H F, Van Bennekom A J. 1987. Diatoms in surface sediments of the Zaire deep-sea fan (SE Atlantic Ocean) and their relation to overlying water masses. Netherlands Journal of Sea Research, 21 (3): 203–217.CrossRefGoogle Scholar
  63. Wang B, Huang F, Wu Z W, Yang J, Fu X H, Kikuchi K. 2009. Multi-scale climate variability of the South China Sea monsoon: a review. Dynamics of Atmospheres and Oceans, 47 (1-3): 15–37.CrossRefGoogle Scholar
  64. Wang S L, Xu X R, Sun Y X, Liu J L, Li H B. 2013. Heavy metal pollution in coastal areas of South China: a review. Marine Pollution Bulletin, 76 (1-2): 7–15.CrossRefGoogle Scholar
  65. Weckström K, Korhola A, Weckström J. 2007. Impacts of eutrophication on diatom life forms and species richness in coastal waters of the Baltic Sea. Ambio, 36 (2): 155–160.CrossRefGoogle Scholar
  66. Wu R, Gao Y H, Fang Q, Chen C P, Lan B B, Sun L, Lan D Z. 2013. Diatom assemblages in surface sediments from the South China Sea as environmental indicators. Chinese Journal of Oceanology and Limnology, 31 (1): 31–45.CrossRefGoogle Scholar
  67. Xie S P, Du Y, Huang G, Zheng X T, Tokinaga H, Hu K M, Liu Q Y. 2010. Decadal shift in El Niño influences on Indo-Western Pacific and East Asian climate in the 1970s. Journal of Climate, 23 (12): 3352–3368.CrossRefGoogle Scholar
  68. Yin K D, Qian P Y, Wu M C S, Chen J C, Huang L M, Song X Y, Jian W J. 2001. Shift from P to N limitation of phytoplankton growth across the Pearl River estuarine plume during summer. Marine Ecology Progress Series, 221: 17–28.CrossRefGoogle Scholar
  69. Zachariasse W J, Riedel W R, Sanfilippo A, Schmidt R R, Brolsma M J, Schrader H J, Gersonde R, Drooger M M, Broekman J A. 1978. Micropaleontological counting methods and techniques: an exercise on an eight metres section of the lower Pliocene of Capo Rossello, Sicily. Utrecht Micropaleontological Bulletins, Vol. 17. Utrecht University, Utrecht.Google Scholar
  70. Zhao H, Tang D L. 2007. Effect of 1998 El Niño on the distribution of phytoplankton in the South China Sea. Journal of Geophysical Research, 112 (C2): C02017.CrossRefGoogle Scholar
  71. Zong Y Q. 1997. Implications of Paralia sulcata abundance in Scottish isolation basins. Diatom Research, 12 (1): 125–150.CrossRefGoogle Scholar

Copyright information

© Chinese Society for Oceanology and Limnology, Science Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Rediat Abate
    • 1
    • 3
  • Yahui Gao (高亚辉)
    • 1
    • 2
  • Changping Chen (陈长平)
    • 1
  • Junrong Liang (梁君荣)
    • 1
  • Weifang Chen (陈蔚芳)
    • 2
  • Lin Sun (孙琳)
    • 2
  • Demeke Kifile
    • 4
  1. 1.School of Life SciencesXiamen UniversityXiamenChina
  2. 2.State Key Laboratory of Marine Environmental ScienceXiamen UniversityXiamenChina
  3. 3.College of Natural ScienceArba Minch UniversityArba MinchEthiopia
  4. 4.Department of Zoological SciencesAddis Ababa UniversityAddis AbabaEthiopia

Personalised recommendations