Skip to main content
Log in

Expression and enzymatic characterization of a cold-adapted β-agarase from Antarctic bacterium Pseudoalteromonas sp. NJ21

  • Biology
  • Published:
Chinese Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

An agar-degrading bacterium, designated as Pseudoalteromonas sp. NJ21, was isolated from an Antarctic sediment sample. The agarase gene aga1161 from Pseudoalteromonas sp. NJ21 consisting of a 2 382-bp coding region was cloned. The gene encodes a 793-amino acids protein and was found to possess characteristic features of the Glyco_hydro_42 family. The recombinant agarase (rAga1161) was overexpressed in Escherichia coli and purified as a fusion protein. Enzyme activity analysis revealed that the optimum temperature and pH for the purified recombinant agarase were 30–40°C and 8.0, respectively. rAga1161 was found to maintain as much as 80% of its maximum activity at 10°C, which is typical of a coldadapted enzyme. The pattern of agar hydrolysis demonstrated that the enzyme is an β-agarase, producing neoagarobiose (NA2) as the final main product. Furthermore, this work is the first proof of an agarolytic activity in Antarctic bacteria and these results indicate the potential for the Antarctic agarase as a catalyst in medicine, food and cosmetic industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allouch J, Helbert W, Henrissat B, Czjzek M. 2004. Parallel substrate binding sites in a beta-agarase suggest a novel mode of action on double-helical agarose. Structure, 12: 623–632.

    Article  Google Scholar 

  • Aoki T, Araki T, Kitamikado M. 1990. Purification and characterization of a novel beta-agarase from Vibrio sp. AP-2. Eur. J. Biochem., 187: 461–465.

    Article  Google Scholar 

  • Araki T, Hayakawa M, Lu Z, Karita S, Morishita T. 1998. Purification and characterization of agarases from a marine bacterium, Vibrio sp. PO-303. J. Mar. Biotechnol., 6: 260–265.

    Google Scholar 

  • Araki T, Lu Z, Morishita T. 1998. Optimization of parameters for isolation of protoplasts from Gracilaria verrucosa (Rhodophyta). J. Mar. Biotechnol., 6: 193–197.

    Google Scholar 

  • Bokun L, Guoyong L, Yandan Z, Wei X, Shengkang L, Zhong H. 2012. Gene cloning, expression and characterization of a neoagarotetraose-producing b-agarase from the marine bacterium Agarivorans sp. HZ105. World J. Microbiol. Biotechnol., 28: 1 691–1 697.

    Article  Google Scholar 

  • Buttner M J, Fearnley I M, Bibb M J. 1987. The agarase gene (dagA) of Streptomyces coelicolor A3(2): nucleotide sequence and transcriptional analysis. Mol. Gen. Genet., 209: 101–109.

    Article  Google Scholar 

  • Chen H, Yan X, Zhu P, Lin J. 2006. Antioxidant activity and hepatoprotective potential of agaro-oligosaccharides in vitro and in vivo. Nutr. J., 5: 31.

    Article  Google Scholar 

  • Dong J, Tamaru Y, Araki T A. 2007. Unique beta-agarase, AgaA, from a marine bacterium, Vibrio sp. strain PO-303. Appl. Microbiol. Biotechnol., 74: 1 248–1 255.

    Article  Google Scholar 

  • Fu X T, Kim S M. 2010. Agarase: review of major sources, categories, purification method, enzyme characteristics and applications. Mar. Drugs, 8: 200–218.

    Article  Google Scholar 

  • Gerday C, Aittaleb M, Bentahir M, Chessa J-P, Claverie P, Collins T, D’Amico S, Dumont J, Garsoux G, Georlette D. 2000. Cold-adapted enzymes: from fundamentals to biotechnology. Trends Biotechnol., 18: 103–107.

    Article  Google Scholar 

  • Hu Z, Lin B K, Xu Y, Zhong M Q, Liu G M. 2009. Production and purification of agarase from a marine agarolytic bacterium Agarivorans sp. HZ105. J. Appl. Microbiol., 106: 181–190.

    Article  Google Scholar 

  • Jang M K, Lee D G, Kim N Y, Yu K H, Jang H J, Lee S W, Jang H J, Lee Y J, Lee S H. 2009. Purification and characterization of neoagarotetraose from hydrolyzed agar. J. Microbiol. Biotechnol., 19: 1 197–1 200.

    Google Scholar 

  • Kim H T, Lee S, Kim K H, Choi I G. 2012. The complete enzymatic saccharification of agarose and its application to simultaneous saccharification and fermentation of agarose for ethanol production. Bioresour. Technol., 107: 301–306.

    Article  Google Scholar 

  • Kobayashi R, Takisada M, Suzuki T, Kirimura K, Usami S. 1997. Neoagarobiose as a novel moisturizer with whitening effect. Biosci. Biotechnol. Biochem., 61: 162–163.

    Article  Google Scholar 

  • Kong J Y, Hwang S H, Kim B J, Bae S K, Kim J D. 1997. Cloning and expression of agarase gene from a marine bacterium Pseudomonas sp. W7. Biotechnol. Lett., 19: 23–26.

    Article  Google Scholar 

  • Leon O, Quintana L, Peruzzo G, Slebe J C. 1992. Purification and properties of an extracellular agarase from Alteromonas sp. strain C-1. Appl. Environ. Microbiol., 58: 4 060–4 063.

    Google Scholar 

  • Lin N, Mao X Z, Yang M, Mu B Z, Wei D Z. 2014. Gene cloning, expression and characterisation of a new b-agarase, AgWH50C, producing neoagarobiose from Agarivorans gilvus WH0801. World J. Microbiol. Biotechnol., http://dx.doi.org/10.1007/s11274-013-1591-y.

    Google Scholar 

  • Long M, Yu Z, Xu X. 2010. A novel beta-agarase with high pH stability from marine Agarivorans sp. LQ48. Mar. Biotechnol., 12: 62–69.

    Article  Google Scholar 

  • Ma C, Lu X, Shi C, Li J, Gu Y, Ma Y, Chu Y, Han F, Gong Q, Yu W. 2007. Molecular cloning and characterization of a novel beta-agarase, AgaB, from marine Pseudoalteromonas sp. CY24. J. Biol. Chem., 282: 3 747–3 754.

    Article  Google Scholar 

  • Margesin R, Schinner F. 1999. Cold-adapted organisms. In: Ecology, Physiology, Enzymology and Molecular Biology. Berlin: Springer.

    Google Scholar 

  • Marshall C J. 1997. Cold-adapted enzymes. TIBTECH, 15: 358–359.

    Article  Google Scholar 

  • Miller G L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem., 31: 426–428.

    Article  Google Scholar 

  • Ohta Y, Hatada Y, Ito S, Horikoshi K. 2005. High-level expression of a neoagarobiose-producing beta-agarase gene from Agarivorans sp. JAMB-A11 in Bacillus subtilis and enzymic properties of the recombinant enzyme, Biotechnol. Appl. Biochem., 41: 183–191.

    Article  Google Scholar 

  • Ohta Y, Hatada Y, Nogi Y, Li Z, Ito S, Horikoshi K. 2004. Cloning, expression, and characterization of a glycoside hydrolase family 86 beta agarase from a deep-sea Microbulbifer-like isolate. Appl. Microb. Biotechnol., 66: 266–275.

    Article  Google Scholar 

  • Russell N J. 2000. Towards a molecular understanding of cold activity of enzymes from psychrophiles. Extremophiles, 4: 83–90.

    Article  Google Scholar 

  • Sellek G A, Chaudhuri J B. 1999. Biocatalysis in organic media using enzymes from extremophiles. Enzyme Microb. Technol., 25: 471–482.

    Article  Google Scholar 

  • Soensen H P, Mortensen K K. 2005. Soluble expression of recombinant proteins in the cytoplasm of Escherichia coli. Microb. Cell Fact., 4: 1–8.

    Article  Google Scholar 

  • Sugano Y, Terada I, Arita M, Noma M, Matsumoto T. 1993. Purification and characterization of a new agarase from a marine bacterium, Vibrio sp. Strain JT0107. Appl. Environ. Microbiol., 59: 1 549–1 554.

    Google Scholar 

  • Wang J X, Mou H, Guan H. 2004. Anti-oxidation of agar oligosaccharides produced by agarase from a marine bacterium. J. Appl. Phycol., 16: 333–340.

    Article  Google Scholar 

  • Yoshizawa Y, Tsunehiro J, Nomura K, Itoh M, Fukui F, Ametani A, Kaminogawa S. 1996. In vivo macrophagestimulation activity of the enzyme-degraded water-soluble polysaccharide fraction from a marine alga (Gracilaria verrucosa). Biosci. Biotechnol. Biochem., 61: 1 667–1 671.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiang Li  (李江).

Additional information

Supported by the Public Science and Technology Research Funds Project of Ocean (No. 201105027), the Shandong Province Young and the Middle-Aged Scientists Research Awards Fund (No. DS2010HZ001), and the Basic Scientific Research Funds of First Institute of Oceanography, State Oceanic Administration (No. GY02-2011G17)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Sha, Y. Expression and enzymatic characterization of a cold-adapted β-agarase from Antarctic bacterium Pseudoalteromonas sp. NJ21. Chin. J. Ocean. Limnol. 33, 319–327 (2015). https://doi.org/10.1007/s00343-015-4072-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-015-4072-3

Keyword

Navigation