Skip to main content
Log in

Temperature effects on lipid properties of microalgae Tetraselmis subcordiformis and Nannochloropsis oculata as biofuel resources

  • Biology
  • Published:
Chinese Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

Microalgae Tetraselmis subcordiformis and Nannochloropsis oculata were cultured at 15, 20, 25, 30, and 35°C and their properties as potential biofuel resources were examined. The results indicate that T. subcordiformis and N. oculata grew best at 20°C and 25°C and yielded the highest total lipids at 20°C and 30°C, respectively. With increased temperature, neutral lipid and polyunsaturated fatty acids (FAs) decreased while saturated FAs increased, accompanied by increased monounsaturated FAs (MUFAs) in T. subcordiformis and decreased MUFAs in N. oculata; meanwhile, the predicted cetane number of FA methyl esters increased from 45.3 to 47.6 in T. subcordiformis and from 52.3 to 60.3 in N. oculata. Therefore, optimizing culture temperatures is important for improving microalgal biodiesel production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmad A L, Yasin N H, Derek C J C, Lim J K. 2011. Microalgae as a sustainable energy source for biodiesel production: a review. Renew Sust. Energ. Rev., 15(1): 584–593.

    Article  Google Scholar 

  • Bruton T, Lyons H, Lerat Y, Stanley M, Rasmussen M B. 2009. A Review of the Potential of Marine Algae as a Source of Biofuel in Ireland. Dublin: Sustainable Energy Ireland-SEI.

    Google Scholar 

  • Chen G Q, Jiang Y, Chen F. 2008. Variation of lipid class composition in Nitzschia laevis as a response to growth temperature change. Food Chemistry, 109(1): 88–94.

    Article  Google Scholar 

  • Cheng Y X, Jiang X M, Chen X H, Huang X H, Huang X X, Zhou Z G, Zhang D M, Hou Z E, Chen K J. 2005. Live Food Cultivation. China Agriculture, Beijing. 324p. (in Chinese)

    Google Scholar 

  • Converti A, Casazza A A, Ortiz E Y, Perego P, Borghi M D. 2009. Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chem. Eng. Prog: Process Intensif, 48(6): 1 146–1 151.

    Article  Google Scholar 

  • Doubnerová V, Ryšlavá H. 2011. What can enzymes of C4 photosynthesis do for C3 plants under stress? Plant Science, 180(4): 575–583.

    Article  Google Scholar 

  • Feller U, Crafts-Brandner S J, Salvucci M E. 1998. Moderately high temperatures inhibit ribulose-1, 5-bisphosphate carboxylase/oxygenase (Rubisco) activase-mediated activation of Rubisco. Plant Physiology, 116(2): 539–546.

    Article  Google Scholar 

  • Guillard R R L. 1975. Culture of phytoplankton for feeding marine invertebrates. In: Smith W L, Chanley M H eds. Culture of Marine Invertebrate Animals. Plenum, New York Press. p.29–60.

    Chapter  Google Scholar 

  • Huang X X, Huang Z Z, Wen W, Yan J Q. 2012. Effects of nitrogen supplementation of the culture medium on the growth, total lipid content and fatty acid profiles of three microalgae (Tetraselmis subcordiformis, Nannochloropsis oculata and Pavlova viridis). J. Appl. Phycol., 25(1): 129–137.

    Article  Google Scholar 

  • Huang X X, Wei L K, Huang Z Z, Yan J Q. 2013. Effect of high ferric ion concentrations on total lipids and lipid characteristics of Tetraselmis subcordiformis, Nannochloropsis oculata and Pavlova viridis. J. Appl. Phycol., Published OnlineFirst, June 2013. http://dx.doi.org/10.1007/s10811-013-0056-x.

    Google Scholar 

  • James G O, Hocart C H, Hillier W, Price G D, Djordjevic M A. 2013. Temperature modulation of fatty acid profiles for biofuel production in nitrogen deprived Chlamydomonas reinhardtii. Bioresour. Technol., 127: 441–447.

    Article  Google Scholar 

  • Jiang X M. 2002. Effects of temperatures, light intensity and nitrogen concentrations on the growth and fatty acid composition of Nannochloropsis oculata. Mar. Sciences, 26(8): 9–13. (in Chinese with English abstract)

    Google Scholar 

  • Jiang Y, Chen F. 2000. Effects of temperature and temperature shift on docosahexaenoic acid production by the marine microalga Crypthecodinium cohnii. J. Am. Oil Chem. Soc., 77(6): 613–617.

    Article  Google Scholar 

  • Leggat W, Whitney S, Yellowlees D. 2004. Is coral bleaching due to the instability of the zooxanthellae dark reactions? Symbiosis, 37(1–3): 137–153.

    Google Scholar 

  • Li X, Hu H Y, Zhang Y P. 2011. Growth and lipid accumulation properties of a freshwater microalga Scenedesmus sp. under different cultivation temperature. Bioresour. Technol., 102(3): 3 098–3 102.

    Article  Google Scholar 

  • Los D A, Murata N. 2004. Membrane fluidity and its roles in the perception of environmental signals. BBA-Biomembranes, 1666(1): 142–157.

    Article  Google Scholar 

  • Piloto-Rodríguez R, Sánchez-Borroto Y, Lapuerta M, Goyos-Pérez L, Verhelst S. 2013. Prediction of the cetane number of biodiesel using artificial neural networks and multiple linear regression. Energ. Convers. Manage, 65: 255–261.

    Article  Google Scholar 

  • Ramos M J, Fernández C M, Casas A, Rodríguez L, Pérez Á. 2009. Influence of fatty acid composition of raw materials on biodiesel properties. Bioresour. Technol., 100(1): 261–268.

    Article  Google Scholar 

  • Renaud S M, Thinh L V, Lambrinidis G, Parry D L. 2002. Effect of temperature on growth, chemical composition and fatty acid composition of tropical Australian microalgae grown in batch cultures. Aquaculture, 211(1): 195–214.

    Article  Google Scholar 

  • Roleda M Y, Slocombe S P, Leakey R J G, Day J G, Bell E M, Stanley M S. 2013. Effects of temperature and nutrient regimes on biomass and lipid production by six oleaginous microalgae in batch culture employing a two-phase cultivation strategy. Bioresour. Technol., 129: 439–449.

    Article  Google Scholar 

  • Rousch J M, Bingham S E, Sommerfeld M R. 2003. Changes in fatty acid profiles of thermo-intolerant and thermotolerant marine diatoms during temperature stress. J. Exp. Mar. Biol. Ecol., 295(2): 145–156.

    Article  Google Scholar 

  • Sayegh F A Q, Montagnes D J S. 2011. Temperature shifts induce intraspecific variation in microalgal production and biochemical composition. Bioresour. Technol., 102(3): 3 007–3 013.

    Article  Google Scholar 

  • Scott S A, Davey M P, Dennis J S, Horst I, Howe C J, Lea-Smith D J, Smith A G. 2010. Biodiesel from algae: challenges and prospects. Curr. Opin. Biotechnol., 21(3): 277–286.

    Article  Google Scholar 

  • Sheng J, Kim H W, Badalamenti J P, Zhou C, Sridharakrishnan S, Krajmalnik-Brown R, Rittmann B E, Vannela R. 2011. Effects of temperature shifts on growth rate and lipid characteristics of Synechocystis sp. PCC6803 in a benchtop photobioreactor. Bioresour. Technol., 102(24): 11 218–11 225.

    Article  Google Scholar 

  • Vonshak A. 2002. Spirulina platensis (Arthrospira): Physiology, Cell-biology and Biotechnology. Taylor and Francis, London.

    Google Scholar 

  • Wadumesthrige K, Smith J C, Wilson J R, Salley S O, Simon Ng K Y. 2008. Investigation of the parameters affecting the cetane number of biodiesel. J. Am. Oil Chem. Soc., 85(11): 1 073–1 081.

    Article  Google Scholar 

  • Wei L K, Huang X X, Huang Z Z, Zhou Z G. 2013. Orthogonal test design for optimization of lipid accumulation and lipid property in Nannochloropsis oculata for biodiesel production. Bioresour. Technol., 147: 534–538.

    Article  Google Scholar 

  • Xu D, Gao Z Q, Li F, Fan X, Zhang X W, Ye N H, M S L, Liang C W, Li D M. 2013. Detection and quantitation of lipid in the microalga Tetraselmis subcordiformis (Wille) Butcher with BODIPY 505/515 staining. Bioresour. Technol., 127: 386–390.

    Article  Google Scholar 

  • Yang Y, Mininberg B, Tarbet A, Weathers P. 2013. At high temperature lipid production in Ettlia oleoabundans occurs before nitrate depletion. Appl. Microbiol. Biotechnol., 97(5): 2 263–2 273.

    Article  Google Scholar 

  • Yao S, Brandt A, Egsgaard H, Gjermansen C. 2012. Neutral lipid accumulation at elevated temperature in conditional mutants of two microalgae species. Plant Physiol. Biochem., 61: 71–79.

    Article  Google Scholar 

  • Zhu C J, Lee Y K, Chao T M. 1997. Effects of temperature and growth phase on lipid and biochemical composition of Isochrysis galbana TK1. J. Appl. Phycol., 9(5): 451–457.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuxiong Huang  (黄旭雄).

Additional information

Supported by the National High Technology Research and Development Program of China (863 Program) (No. 2009AA064401), the Special Fundation for Marine Renewable Energy from the State Oceanic Administration of China (No. SHME2011SW02), and the Shanghai Universities First-class Disciplines Project of Fisheries (A)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, L., Huang, X. & Huang, Z. Temperature effects on lipid properties of microalgae Tetraselmis subcordiformis and Nannochloropsis oculata as biofuel resources. Chin. J. Ocean. Limnol. 33, 99–106 (2015). https://doi.org/10.1007/s00343-015-3346-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-015-3346-0

Keyword

Navigation