Improved laser-ultrasonic excitation for imaging of seismic physical modeling

Abstract

In this study, a laser ultrasonic technology (LUT) was employed for seismic physical model (SPM) imaging. To promote an efficient light-to-ultrasonic-wave conversion, a functionalised Au film was used as a medium because of its stronger photoacoustic (PA) effect. Numerical analysis and experiments were performed to characterise the entire SPM imaging process, including the generation of PA signals, transmission of PA inside the SPM, and collection of echo data for the reconstruction of SPM images using the time-of-flight algorithm. The results show that the Au film coating on the SPM produces a strong PA effect, which significantly improves the imaging depth and resolution of the SPM based on the strong high-frequency ultrasonic wave excitation. The proposed method opens new avenues for SPM imaging using optical technology.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    M.S. King, Rock-physics developments in seismic exploration: a personal 50-year perspective. Geophysics 70(6), 3ND-8ND (2005)

    ADS  Article  Google Scholar 

  2. 2.

    L.K. Santos, Seismic physical modeling based on the physical similitudes: application in isotropic media. Master’s Dissertation, Federal University of Pará, 2015

  3. 3.

    T.R. Gururaja, W.A. Schulze, L.E. Cross, R.E. Newnham, B.A. Auld, Y.J. Wang, Piezoelectric composite materials for ultrasonic transducer applications. Part I: resonant modes of vibration of PZT rod-polymer composites, IEEE Trans. Sonics Ultrason. 32(4) (1995)

  4. 4.

    J. Jung, V. Annapureddy, G.-T. Hwang, Y. Song, W. Lee, W. Kang, J. Ryu, H. Choi, 31-mode piezoelectric micromachined ultrasonic transducer with PZT thick film by granule spraying in vacuum process. Appl. Phys. Lett. 110, 212903 (2017)

    ADS  Article  Google Scholar 

  5. 5.

    C.B. Scruby, Some applications of laser ultrasound. Ultrasonics 27(4), 195–209 (1989)

    Article  Google Scholar 

  6. 6.

    T. Liu, J. Wang, G.I. Petrov, V.V. Yakovlev, H.F. Zhang, Photoacoustic generation by multiple picosecond pulse excitation. Med. Phys. 37(4), 1518–1521 (2010)

    Article  Google Scholar 

  7. 7.

    C.B. Scruby, Some applications of laser ultrasound. Ultrasonics 27, 195–209 (1989)

    Article  Google Scholar 

  8. 8.

    Y. Li, J. Tian, S. Ji, C. Zhou, Y. Sun, Y. Yao, Fiber-optic multipoint laser-ultrasonic excitation transducer using coreless fibers. Opt. Express 27(5), 6116–6128 (2019)

    ADS  Article  Google Scholar 

  9. 9.

    B. Pouet, P.N.J. Rasolofosaon, Seismic physical modeling using laser ultrasonics, Society of Exploration Geophysicists, 1990 SEG Annual Meeting, (1990), pp.841–844

  10. 10.

    I. Arias, Modeling of the detection of surface-breaking cracks by laser ultrasonics, Doctor of Philosophy Dissertation, Northwestern University, 2003

  11. 11.

    R.G. Pratt, Seismic waveform inversion in the frequency domain, Part 1: theory and verification in a physical scale model. Geophysics 64(3), 888–901 (1999)

    ADS  Article  Google Scholar 

  12. 12.

    Q. Rong, Z. Shao, X. Yin, T. Gang, F. Liu, A. Sun, X. Qiao, Ultrasonic imaging of seismic physical models using fiber bragg grating fabry-perot probe. IEEE J. Sel. Top. Quant. Electron. 23(2), 560056 (2017)

    Article  Google Scholar 

  13. 13.

    Y.W. Wang, Y.Y. Fu, Q.L. Peng, S.S. Guo, G. Liu, J. Li, H.H. Yang, G.N. Chen, Dye-enhanced graphene oxide for photothermal therapy and photoacoustic imaging. J. Mater. Chem. B 1, 5762–5767 (2013)

    Article  Google Scholar 

  14. 14.

    G.B. Yang, H. Gong, T. Liu, X.Q. Sun, L. Cheng, Z. Liu, Two-dimensional magnetic WS2@Fe3O4 nanocomposite with mesoporous silica coating for drug delivery and imaging-guided therapy of cancer. Biomaterials 60, 62–71 (2015)

    Article  Google Scholar 

  15. 15.

    A. Zerda, Z. Liu, S. Bodapati, R. Teed, S. Vaithilingam, B.T. Khuri-Yakub, X.Y. Chen, H.J. Dai, S.S. Gambhir, Ultra-high sensitivity carbon nanotube agents for photoacoustic molecular imaging in living mice. Nano Lett. 10(6), 2168–2172 (2010)

    ADS  Article  Google Scholar 

  16. 16.

    K. Homan, J. Shah, S. Gomez, H. Gensler, A. Karpiouk, Silver nanosystems for photoacoustic imaging and image-guided therapy, J. Biomed. Opt. 15(2) (2010)

  17. 17.

    J. Lee, S-Y. Teh, A. Lee, H.H. Kim, C.Y. Lee, K.K. Shung, Transverse acoustic trapping using a Gaussian focused ultrasound, Ultrasound Med. Biol. 36(2) (2010)

  18. 18.

    A. Hatef, B. Darvish, A. Dagallier, Y.R. Davletshin, W. Johnston, J.C. Kumaradas, D. Rioux, M. Meunier, Analysis of photoacoustic response from gold-silver alloy nanoparticles irradiated by short pulsed laser in water. J. Phys. Chem. C 119(42), 24075–24080 (2015)

    Article  Google Scholar 

  19. 19.

    W.W. Li, X.Y. Chen, Gold nanoparticles for photoacoustic imaging. Nanomedicine 10(2), 299–320 (2015)

    Article  Google Scholar 

  20. 20.

    F.C.P. Masim, W.-H. Hsu, H.-L. Liu, T. Yonezawa, A. Balcytis, S. Juodkazis, K. Hatanaka, Photoacoustic signal enhancements from gold nano-colloidal suspensions excited by a pair of time-delayed femtosecond pulses. Opt. Express 25(16), 19497–19507 (2017)

    ADS  Article  Google Scholar 

  21. 21.

    E.P. Furlani, I.H. Karampelas, Q. Xie, Analysis of pulsed laser plasmon-assisted photothermal heating and bubble generation at the nanoscale. Lab Chip 12, 3707–3719 (2012)

    Article  Google Scholar 

  22. 22.

    A.O. Govorov, W. Zhang, T. Skeini, H. Richardson, J. Lee, N.A. Kotov, Gold nanoparticle ensembles as heaters and actuators: melting and collective plasmon resonances. Nanoscale Res. Lett. 1, 84–90 (2006)

    ADS  Article  Google Scholar 

  23. 23.

    L-H.V.Wang, Photoacoustic iImaging photoacoustic imaging and spectroscopy, CRC Press, TAYLOR & Francis Group, Boca Raton, London, New York, 2009

  24. 24.

    F. Gao, R. Kishor, X. Feng, et al., An analytical study of photoacoustic and thermoacoustic generation efficiency towards contrast agent and film design optimization, Photoacoustics (2017)

  25. 25.

    X. Liu, W. Wang, Q. Rong, B. Yu, Highly sensitive photoacoustic imaging: a new strategy for ultrahigh spatial resolution seismic physical model imaging. IEEE Photonics J. 12(3), 1–11 (2020)

    Google Scholar 

  26. 26.

    H. Chen, X. Qiao, F. Chen et al., Photoacoustic generation using WS2 in ultrasonic detection of seismic physical models. Opt. Int. J.Light Electr. Opt. 200, 163401 (2019)

    Article  Google Scholar 

  27. 27.

    C. Noguez, Surface plasmons on metal nanoparticles: the influence of shape and physical environment. J. Phys. Chem. C 111(10), 3806 (2007)

    Article  Google Scholar 

  28. 28.

    M.A. Garcia, Surface plasmons in metallic nanoparticles: fundamentals and applications. J. Phys. D Appl. Phys. 44(28), 283001 (2011)

    Article  Google Scholar 

  29. 29.

    S.Y. Gezgi̇n, H.Ş. Kılıç, An improvement on the conversion efficiency of Si/CZTS solar cells by LSPR effect of embedded plasmonic Au nanoparticles, 101 (2020)

  30. 30.

    T. Gang, M. Hu, X. Qiao, J. Li, Z. Shao, R. Tong, Q. Rong, Fiber-optic Michelson interferometer fixed in a tilted tube for direction-dependent ultrasonic detection. Opt. Laser Eng. 88, 60–64 (2017)

    Article  Google Scholar 

  31. 31.

    Z. Shao, Q. Rong, F. Chen, X. Qiao, High-spatial-resolution ultrasonic sensor using a micro suspended-core fiber. Opt. Express 26(8), 10820–10832 (2018)

    ADS  Article  Google Scholar 

  32. 32.

    X. Qiao, Z. Shao, W. Bao, Q. Rong, Fiber Bragg grating sensors for the oil industry. Sensors 17(3), 429 (2017)

    Article  Google Scholar 

  33. 33.

    Y. Tian, N. Wu, K. Sun et al., Numerical simulation of fiber-optic photoacoustic generator using nanocomposite material. J. Comput. Acoust. 21(2), 1350002 (2013)

    Article  Google Scholar 

  34. 34.

    I.G. Calasso, W. Craig, G.J. Diebold, Photoacoustic point source. Phys. Rev. Lett. 86(16), 3550 (2001)

    ADS  Article  Google Scholar 

  35. 35.

    G.J. Diebold, The photoacoustic effect generated by a spherical droplet in a fluid. J. Acoust. Soc. Am. 84(6), 2245–2251 (1988)

    ADS  Article  Google Scholar 

  36. 36.

    J.H.D. Boer, J.F.H. Custers, Adsorption by van der Waals forces and surface structure. Physica 4(10), 1017–1024 (1937)

    ADS  Article  Google Scholar 

Download references

Funding

This work was supported by National Natural Science Foundation of China (Nos. 61735014, 61927812, 62005214), Natural Science Foundation of China (No. 61605159), Natural Science Foundation of Shaanxi (2019JM-358), Shaanxi Education Department Fund (18JK0779).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xueguang Qiao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jin, K., Liu, X., Li, P. et al. Improved laser-ultrasonic excitation for imaging of seismic physical modeling. Appl. Phys. B 127, 32 (2021). https://doi.org/10.1007/s00340-020-07559-5

Download citation