Generating arbitrary arrays of circular Airy Gaussian vortex beams with a single digital hologram

Abstract

Circular Airy Gaussian vortex (CAGV) beams have gained great popularity in areas of research such as optical tweezers and optical communications due to their fascinating properties, such as auto-focusing and self-healing. The propagation dynamics of these beams is dictated by their topological charge and launch angle. For example, larger topological charges and positive launch angles enhance the maximum intensity in the focal plane while simultaneously shortening the focal length of autofocusing. Crucially, while the generation of single CAGV beams has been widely reported, the simultaneous generation of multiple CAGV beams, has remained challenging. Here, we put forward a novel technique that enables the simultaneous generation of multiple CAGV beams with independent topological charges or initial launch angles from a single digital hologram encoded on a spatial light modulator (SLM). Our technique enables the independent manipulation of each CAGV beam, their topological charge and launch angle, at refresh rates limited only by the SLM (60 Hz). This technique paves the way for the simultaneous manipulation of microparticles in three dimensions and provides with an alternative way to realize optical communications with multiple spatial modes of light.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    N.K. Efremidis, D.N. Christodoulides, Opt. Lett. 35, 4045 (2010)

    ADS  Article  Google Scholar 

  2. 2.

    J.D. Ring, J. Lindberg, A. Mourka, M. Mazilu, K. Dholakia, M.R. Dennis, Opt. Express 20, 18955 (2012)

    ADS  Article  Google Scholar 

  3. 3.

    X.Y. Chen, D.M. Deng, J.L. Zhuang, X. Peng, D.D. Li, L.P. Zhang, F. Zhao, X.B. Yang, H.Z. Liu, Opt. Lett. 43, 3626 (2018)

    ADS  Article  Google Scholar 

  4. 4.

    I. Chremmos, N.K. Efremidis, D.N. Christodoulides, Opt. Lett. 36, 1890 (2011)

    ADS  Article  Google Scholar 

  5. 5.

    S.N. Khonina, A.P. Porfirev, A.V. Ustinov, J. Opt. 20, 025605 (2018)

    ADS  Article  Google Scholar 

  6. 6.

    S.N. Khonina, A.V. Ustinov, A.P. Porfirev, Appl. Optics 57, 1410 (2018)

    ADS  Article  Google Scholar 

  7. 7.

    D.G. Papazoglou, N.K. Efremidis, D.N. Christodoulides, S. Tzortzakis, Opt. Lett. 36, 1842 (2011)

    ADS  Article  Google Scholar 

  8. 8.

    I. Chremmos, P. Zhang, J. Prakash, N.K. Efremidis, D.N. Christodoulides, Z. Chen, Opt. Lett. 36, 3675 (2011)

    ADS  Article  Google Scholar 

  9. 9.

    Hu. Yi, G.A. Siviloglou, P. Zhang, N.K. Efremidis, D.N. Christodoulides, Nonlinear Photonics and Novel Optical Phenomena (Springer, New York, 2012).

    Google Scholar 

  10. 10.

    P. Zhang, J. Prakash, Z. Zhang, M.S. Mills, N.K. Efremidis, D.N. Christodoulides, Z. Chen, Opt. Lett. 36, 2883 (2011)

    ADS  Article  Google Scholar 

  11. 11.

    Y.F. Jiang, K.K. Huang, X.H. Lu, Opt. Express 21, 024413 (2013)

    Article  Google Scholar 

  12. 12.

    Y.F. Jiang, Z.L. Cao, H.H. Shao, W.T. Zheng, B.X. Zeng, X.H. Lu, Opt. Express 24, 18072 (2016)

    ADS  Article  Google Scholar 

  13. 13.

    P. Panagiotopoulos, D.G. Papazoglou, A. Couairon, S. Tzortzakis, Nat. Commun. 4, 2622 (2013)

    ADS  Article  Google Scholar 

  14. 14.

    L. Allen, M.W. Beijersbergen, R.J. Spreeuw, Phys. Rev. A 45, 8185 (1992)

    ADS  Article  Google Scholar 

  15. 15.

    M.S. Chen, S.J. Huang, X. Liu, Y. Chen, Appl. Phys. B 125, 184 (2019)

    ADS  Article  Google Scholar 

  16. 16.

    F. Deng, W. Yu, D.M. Deng, Laser Phys. Lett. 13, 116202 (2016)

    ADS  Article  Google Scholar 

  17. 17.

    Y. Zhou, S.T. Feng, S.P. Nie, J. Ma, C.J. Yuan, Opt. Express 24, 25258 (2016)

    ADS  Article  Google Scholar 

  18. 18.

    N. Wiersma, N. Marsal, M. Sciamanna, D. Wolfersberger, Sci. Rep. 6, 35078 (2016)

    ADS  Article  Google Scholar 

  19. 19.

    B. Chen, C.D. Chen, X. Peng, M.L. Zhou, D.M. Deng, Opt. Express 23, 19288 (2015)

    ADS  Article  Google Scholar 

  20. 20.

    Y.F. Jiang, K.K. Huang, X.H. Lu, Opt. Express 20, 18579 (2012)

    ADS  Article  Google Scholar 

  21. 21.

    Y.F. Jiang, S.F. Zhao, W.L. Yu, X.W. Zhu, J. Opt. Soc. Am. A 35, 890 (2018)

    ADS  Article  Google Scholar 

  22. 22.

    J.J. Yu, C.H. Zhou, W. Jia, Appl. Opt. 51, 2485 (2012)

    ADS  Article  Google Scholar 

  23. 23.

    J.N. Mait, J. Opt. Soc. Am. A 7, 1514 (1990)

    ADS  Article  Google Scholar 

  24. 24.

    S.N. Khonina, V.V. Kotlyar, V.A. Soifer, K. Jefimovs, J. Turunen, J. Mod. Opt. 51, 761 (2004)

    ADS  Article  Google Scholar 

  25. 25.

    S. Fu, T. Wang, C. Gao, J. Opt. Soc. Am. A 33, 1836 (2016)

    ADS  Article  Google Scholar 

  26. 26.

    S.N. Khonina, A.V. Ustinov, Appl. Opt. 58, 8227 (2019)

    ADS  Article  Google Scholar 

  27. 27.

    S.N. Khonina, S.V. Karpeev, A.P. Porfirev, Sensors 20, 3850 (2020)

    Article  Google Scholar 

  28. 28.

    S.N. Khonina, S.V. Karpeev, V.D. Paranin, Opt. Lasers Eng. 105, 68 (2018)

    Article  Google Scholar 

  29. 29.

    S.J. Huang, S.Z. Wang, Y.J. Yu, Acta Phys Sin. 58, 952 (2009). ((in Chinese))

    Google Scholar 

  30. 30.

    G.A. Siviloglou, J. Broky, A. Dogariu, D.N. Christodoulides, Opt. Lett. 33, 207 (2008)

    ADS  Article  Google Scholar 

  31. 31.

    C.R. Guzmán, N. Bhebhe, N. Mahonisi, A. Forbes, J. Opt. 19, 113501 (2017)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (NSFC) (11934013 and 61975047).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Wei Gao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, D., Jin, L., Rosales-Guzmán, C. et al. Generating arbitrary arrays of circular Airy Gaussian vortex beams with a single digital hologram. Appl. Phys. B 127, 22 (2021). https://doi.org/10.1007/s00340-020-07558-6

Download citation