Dielectric slotted nanodisk laser with ultralow pump threshold by anapole excitation

Abstract

Developing ultralow threshold nanolasers is a challenging task despite of their great potential for a variety of applications. This work proposes to combine the advantages of low loss of dielectric materials and tight confinement of field in slotted dielectric nanodisks with gain medium embedded to them and supported by metallic substrate, which generates anapole mode with a lifetime longer than for dielectric substrate. Since the dielectric nanocavity has intrinsically low loss, one can achieve lasing with ultralow threshold down to 0.02 pJ for a spot size 1.5 μm of pump, several orders-of-magnitude lower than the preceding records. Dielectric slotted disk nanolasers proposed here can find broad applications for biosensing, near-field spectroscopy, and many other fields.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Y. Yin, T. Qiu, J. Li, P.K. Chu, Nano Energy 1, 25–41 (2012)

    Google Scholar 

  2. 2.

    R.-M. Ma, R.F. Oulton, V.J. Sorger, X. Zhang, Laser Photon. Rev. 7, 1–21 (2013)

    ADS  Google Scholar 

  3. 3.

    M.T. Hill, M.C. Gather, Nat. Photon. 8, 908–918 (2014)

    ADS  Google Scholar 

  4. 4.

    Z. Wang, X. Meng, A.V. Kildishev, A. Boltaseeva, V.M. Shalaev, Laser Photon. Rev. 11, 1700212 (2017)

    ADS  Google Scholar 

  5. 5.

    S.H. Pan, S.S. Deka, A.E. Amili, Q. Gu, Y. Fainman, Prog. Quantum Electron. 59, 1–18 (2018)

    ADS  Google Scholar 

  6. 6.

    R.-M. Ma, R.F. Oulton, Applications of nanolasers. Nat. Nanotechnol. 3, 660–665 (2018)

    Google Scholar 

  7. 7.

    E.I. Galanzha, R. Weingold, D.A. Nedosekin, M. Sarimollaoglu, J. Nolan, W. Harrrington, A.S. Kuchyanov, R.G. Parkhomenko, F. Watanabe, Z. Nima, A.S. Borris, A.I. Plekhanov, M.I. Stockman, V.P. Zharov, Nat. Commun. 8, 15528 (2017)

    ADS  Google Scholar 

  8. 8.

    P. Song, J.-H. Wang, M. Zhang, F. Yang, H.-J. Lu, B. Kang, J.-J. Xu, H.-Y. Chen, Sci. Adv. 4, eaat0292 (2018)

    ADS  Google Scholar 

  9. 9.

    K. Watanabe, M. Nomoto, F. Nakamura, S. Hachuda, A. Sakada, T. Watanabe, Y. Goshiwa, T. Baba, Biosens. Bioelectron. 117, 161–167 (2018)

    Google Scholar 

  10. 10.

    J. Leuthold, C. Hoessbacher, S. Muehlbrandt, A. Melikyan, M. Kohl, C. Koos, W. Freude, V. Dolores-Calzadilla, M. Smit, I. Suares, J. Martinez-Pastor, E.P. Fitrakis, I. Tomkos, Opt. Photon. News 24, 28–35 (2013)

    ADS  Google Scholar 

  11. 11.

    D.J. Bergman, M.I. Stockman, Phys. Rev. Lett. 90, 027402 (2003)

    ADS  Google Scholar 

  12. 12.

    M.A. Noginov, G. Zhu, A.M. Belgrave, R. Bakker, V.M. Shalaev, E.E. Narimanov, S. Stout, E. Herz, T. Suteewong, U. Wiesner, Nature 460, 1110–1112 (2009)

    ADS  Google Scholar 

  13. 13.

    R.F. Oulton, V.J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, X. Zhang, Nature 461, 629–632 (2009)

    ADS  Google Scholar 

  14. 14.

    K.-H. Kim, A. Husakou, J. Herrmann, Opt. Express 20, 462–473 (2012)

    ADS  Google Scholar 

  15. 15.

    Y.-W. Huang, W.T. Chen, P.C. Wu, V.A. Fedotov, N.I. Zheludev, D.P. Tsai, Sci. Rep. 3, 1237 (2013)

    Google Scholar 

  16. 16.

    Q. Zhang, G. Li, X. Liu, F. Qian, Y. Li, T.C. Sum, C.M. Lieber, Q. Xiong, Nat. Commun. 5, 4953 (2014)

    ADS  Google Scholar 

  17. 17.

    T. Pickering, J.M. Hamm, A.F. Page, S. Wuestner, O. Hess, Nat. Commun. 5, 4972 (2014)

    ADS  Google Scholar 

  18. 18.

    Y.-J. Lu, C.-Y. Wang, J. Kim, H.-Y. Chen, M.-Y. Lu, Y.-C. Chen, W.-H. Chang, L.-J. Chen, M.I. Stockman, C.-K. Shih, S. Guo, Nano Lett. 14, 4381–4388 (2014)

    ADS  Google Scholar 

  19. 19.

    A. Yang, T.B. Hoang, M. Dridi, M.H. Mikkelsen, G.C. Schatz, T.W. Odom, Nat. Commun. 6, 6939 (2015)

    ADS  Google Scholar 

  20. 20.

    M. Ramezani, A. Halpin, A.I. Fernandez-Dominguez, J. Feist, S.B.-K. Rodriguez, F.J. Garcia-Viad, J.G. Rivas, Optica 4, 31–37 (2017)

    ADS  Google Scholar 

  21. 21.

    K.-H. Kim, S.-H. Choe, Plasmonics 12, 1897–1901 (2017)

    Google Scholar 

  22. 22.

    G.V. Kritanz, N. Arnold, A.V. Kildishev, T.A. Klar, ACS Photon. 5, 3695–3703 (2018)

    Google Scholar 

  23. 23.

    Z. Ahmed, M.A. Taluker, J. Phys. Commun. 2, 045016 (2018)

    Google Scholar 

  24. 24.

    H. Zhu, Y. Fu, F. Meng, X. Wu, Z. Gong, Q. Ding, M.V. Gustafsson, M.T. Trinh, S. Jin, X.-Y. Zhu, Nat. Mater. 14, 636–642 (2015)

    ADS  Google Scholar 

  25. 25.

    K.-H. Kim, S.-H. Choe, Appl. Phys. B 122, 263 (2016)

    ADS  Google Scholar 

  26. 26.

    A. Kodigala, T. Lepetit, Q. Gu, B. Bahari, Y. Fainman, B. Kante, Nature 541, 196–199 (2017)

    ADS  Google Scholar 

  27. 27.

    S.T. Ha, Y.H. Fu, N.K. Emani, Z. Pan, R.M. Bakker, R. Paniagua-Dominguez, A.I. Kuznetsov, Nat. Nanotechnol. 13, 1042–1047 (2018)

    ADS  Google Scholar 

  28. 28.

    A.H. Fikouras, M. Schubert, M. Karl, J.D. Kumar, S.J. Ponis, A.D. Falco, M.C. Gather, Nat. Commun. 9, 4817 (2018)

    ADS  Google Scholar 

  29. 29.

    J.S.T. Gongora, A.E. Miroshnichenko, Y.S. Kivshar, A. Fratalocchi, Nat. Commun. 8, 15335 (2017)

    Google Scholar 

  30. 30.

    A.E. Miroshnichenko, A.B. Evlyukin, Y.F. Yu, R.M. Bakker, A. Chipouline, A.I. Kuznetsov, B. Luk’yanchuk, B.N. Chichkov, Y.S. Kivshar, Nat. Commun. 6, 8069 (2015)

    ADS  Google Scholar 

  31. 31.

    G. Grinblat, Y. Li, M.P. Nielsen, R.F. Oulton, S.A. Maier, Nano Lett. 16, 4635–4640 (2016)

    ADS  Google Scholar 

  32. 32.

    G. Grinblat, Y. Li, M.P. Nielsen, R.F. Oulton, S.A. Maier, ACS Photon. 4, 2144–2149 (2017)

    Google Scholar 

  33. 33.

    J.S.T. Gongora, G. Favraud, A. Fratalocchi, Nanotechnology 28, 104001 (2017)

    ADS  Google Scholar 

  34. 34.

    V. Mazzone, J.S.T. Gongora, A. Fratalocchi, Appl. Sci. 7, 542 (2017)

    Google Scholar 

  35. 35.

    K. Koshelev, G. Favraud, A. Bogdanov, Y. Kivshar, A. Fratalocchi, Nanophotonics 8, 725–745 (2019)

    Google Scholar 

  36. 36.

    K.-H. Kim, W.-S. Rim, ACS Photon. 5, 4769–4775 (2018)

    Google Scholar 

  37. 37.

    L. Xu, M. Rahmani, K.Z. Kamali, A. Lamprianidis, L. Ghirardini, J. Sautter, R. Camacho-Morales, H. Chen, M. Parry, I. Staude, G. Zhang, D. Neshev, A.E. Miroshnichenko, Light Sci. Appl. 7, 44 (2018)

    ADS  Google Scholar 

  38. 38.

    Y. Yang, V.A. Zenin, S.I. Bozhevolnyi, ACS Photon. 5, 1960–1966 (2018)

    Google Scholar 

  39. 39.

    M. Amyot-Bourgeois, E.K. Keshmarzi, C. Hahn, R.N. Tait, P. Berini, Opt. Mater. Express 7, 3963–3978 (2017)

    ADS  Google Scholar 

  40. 40.

    P.B. Johnson, R.W. Christy, Phys. Rev. B 6, 4370–4379 (1972)

    ADS  Google Scholar 

  41. 41.

    E.D. Palik, Handbook of Optical Properties of Solids (Academic Press, Orlando, 1985)

    Google Scholar 

  42. 42.

    A. Fang, T. Koschny, C.M. Soukoulis, J. Opt. 12, 024013 (2010)

    ADS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kwang-Hyon Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 683 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rim, W., Kim, K. & An, J. Dielectric slotted nanodisk laser with ultralow pump threshold by anapole excitation. Appl. Phys. B 126, 119 (2020). https://doi.org/10.1007/s00340-020-07471-y

Download citation