Skip to main content
Log in

Improving the performance of nanostructure multifunctional graphene plasmonic logic gates utilizing coupled-mode theory

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Nanostructure ring resonators are suitable devices for photonic integrated circuits. A nano-scale multifunctional logic device based on plasmon-induced transparency (PIT) is presented here. This device consists of a pair of hexagonal ring resonators coupled with two parallel metal–insulator–metal (MIM) waveguides. According to the coupled-mode theory, the appropriate detuning between the resonances wavelengths of two resonators acts as the key factor to achieve the PIT phenomenon. For this purpose, the PIT phenomenon for several metals utilized in MIM waveguides is studied. Also, graphene has been employed as the replacement for the metal under the hexagonal ring resonator and its parallel waveguides. However, the interaction of light with graphene as a 2D material is weak, by varying the dimensions of waveguides, rings, and their distances, and also, incident light wavelength and graphene chemical potential, we have achieved the desired couplings in the structure. Finite-difference-time-domain (FDTD) simulations confirm that “1” and “0” logic states which represent the high and low levels of the optical power can be achieved at the through and drop ports by changing the refractive index. It has been demonstrated that the proposed structure implements the function of logical operations including XOR and XNOR, simultaneously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. K. Aboutorabi, S. Golmohammadi, Design of two-input nanophotonic AND/OR gate. Optik (Stuttg) 126(1), 38–44 (2015)

    Article  ADS  Google Scholar 

  2. G. Kornaros et al., Efficient implementation of a frame aggregation unit for optical frame-based switching. AEU Int. J. Electron. Commun. 64(1), 17–28 (2010)

    Article  Google Scholar 

  3. A. Mohebzadeh-Bahabady, S. Olyaee, All-optical NOT and XOR logic gates using photonic crystal nano-resonator and based on an interference effect. IET Optoelectron. 12(4), 191–195 (2018)

    Article  Google Scholar 

  4. K. Abedi, A.M. Pourmehdi, S. Golmohammadi, Improvement in performance of three-input nanophotonic AND gate based on optical near-field interactions. Optik 1–8 (2014)

  5. X. Yang, X. Hu, H. Yang, Q. Gong, Ultracompact all-optical logic gates based on nonlinear plasmonic nanocavities. Nanophotonics 6(1), 365–376 (2017)

    Article  Google Scholar 

  6. T. Tahereh-Ahmadi et al., Improving the performance of all-optical switching based on nonlinear photonic crystal microring resonators. AEU Int. J. Electron. Commun. 65(4), 281–287 (2011)

    Article  Google Scholar 

  7. B.H. Gondek, Optical optimalization of organic solar cell wyth. Opt Electron Rev 22(2), 77–85 (2010)

    ADS  Google Scholar 

  8. A. Amini, S. Aghili, S. Golmohammadi, P. Gasemi, Design of microelectromechanically tunable metal—insulator—metal plasmonic band-pass/stop filter based on slit waveguides. Opt. Commun. 403(July), 226–232 (2017)

    Article  ADS  Google Scholar 

  9. A. Ahmadivand, S. Golmohammadi, Surface plasmon resonances and plasmon hybridization in compositional Al/Al2O3/SiO2 nanorings at the UV spectrum to the near infrared region (NIR). Opt. Laser Technol. 66, 9–14 (2015)

    Article  ADS  Google Scholar 

  10. J.S. Gomez-Diaz, J. Perruisseau-Carrier, Graphene-based plasmonic switches at near infrared frequencies. Opt. Express 21(13), 15490–15504 (2013)

    Article  ADS  Google Scholar 

  11. V. Nooshnab, S. Golmohammadi, Revealing the effect of plasmon transmutation on charge transfer plasmons in substrate-mediated metallodielectric aluminum clusters. Opt. Commun. 382, 354–360 (2017)

    Article  ADS  Google Scholar 

  12. F.S. Jafari et al., Microwave Jerusalem cross absorber by metamaterial split ring resonator load to obtain polarization independence with triple band application. AEU Int. J. Electron. Commun. 101, 138–144 (2019)

    Article  Google Scholar 

  13. S. Soleymani, S. Golmohammadi, Surface plasmon polaritons propagation along Armchair and zigzag single-wall carbon nanotubes with different radii. IEEE Trans. Nanotechnol. 16(2), 307–314 (2017)

    Article  ADS  Google Scholar 

  14. S. Chaudhuri, R.S. Kshetrimayum, R.K. Sonkar, High inter-port isolation dual circularly polarized slot antenna with split-ring resonator based novel metasurface. AEU Int. J. Electron. Commun. 107, 146–156 (2019)

    Article  Google Scholar 

  15. A. Farmani, M. Yavarian, A. Alighanbari, M. Miri, M.H. Sheikhi, Tunable graphene plasmonic Y-branch switch in the terahertz region using hexagonal boron nitride with electric and magnetic biasing. Appl. Opt. 56(32), 8931 (2017)

    Article  ADS  Google Scholar 

  16. M. Kalyvas et al., Design algorithm of all-optical linear feedback shift registers. AEU Int. J. Electron. Commun. 57(5), 328–332 (2003)

    Article  Google Scholar 

  17. K. Rong, F. Gan, K. Shi, S. Chu, J. Chen, Configurable integration of on-chip quantum dot lasers and subwavelength plasmonic waveguides. Adv. Mater. 30(21), 1–9 (2018)

    Google Scholar 

  18. K.Y. Chan, J. Ding, J. Ren, S. Cheng, K.Y. Tsang, Supported mixed metal nanoparticles as electrocatalysts in low temperature fuel cells. J. Mater. Chem. 14(4), 505–516 (2004)

    Article  Google Scholar 

  19. M.I. Stockman, S.V. Faleev, D.J. Bergman, Localization versus delocalization of surface plasmons in nanosystems: Can one state have both characteristics? Phys. Rev. Lett. 87(16), 167401 (2001)

    Article  ADS  Google Scholar 

  20. D.F. Phillips, A. Fleischhauer, A. Mair, R.L. Walsworth, M.D. Lukin, Storage of light in atomic vapor. Phys. Rev. Lett. 86(5), 783–786 (2001)

    Article  ADS  Google Scholar 

  21. S. Zhang, D.A. Genov, Y. Wang, M. Liu, X. Zhang, Plasmon-induced transparency in metamaterials. Phys. Rev. Lett. 101(4), 1–4 (2008)

    Google Scholar 

  22. D.-E. Wen et al., Study on the properties of the two-dimensional curved surface metamaterial. AEU Int. J. Electron. Commun. 83, 376–397 (2018)

    Article  Google Scholar 

  23. C. Ram, S. Sivamani, T. Micha Premkumar, V. Hariram, Computational study of leading edge jet impingement cooling with a conical converging hole for blade cooling. ARPN J. Eng. Appl. Sci. 12(22), 6397–6406 (2017)

    Google Scholar 

  24. M.K. QalehJooq, A. Mir, S. Mirzakuchaki, A. Farmani, Semi-analytical modeling of high performance nano-scale complementary logic gates utilizing ballistic carbon nanotube transistors. Phys. E Low-Dimensional Syst. Nanostruct. 104, 286–296 (2018)

    Article  ADS  Google Scholar 

  25. L. Cui, L. Yu, Multifunctional logic gates based on silicon hybrid plasmonic waveguides. Mod. Phys. Lett. B 32(02), 1850008 (2018)

    Article  ADS  Google Scholar 

  26. Y. Zhang, J.P. Small, W.V. Pontius, P. Kim, Fabrication and electric-field-dependent transport measurements of mesoscopic graphite devices. Appl. Phys. Lett. 86(7), 1–3 (2005)

    Google Scholar 

  27. M. Biabanifard, M.S. Abrishamian, Multi-band circuit model of tunable THz absorber based on graphene sheet and ribbons. AEU Int. J. Electron. Commun. 95, 256–263 (2018)

    Article  Google Scholar 

  28. A. Farmani, M. Miri, M.H. Sheikhi, Design of a high extinction ratio tunable graphene on white graphene polarizer. IEEE Photon. Technol. Lett. 30(2), 153–156 (2018)

    Article  ADS  Google Scholar 

  29. B. Liu et al., Multiband and broadband absorption enhancement of monolayer graphene at optical frequencies from multiple magnetic dipole resonances in metamaterials. Nanoscale Res. Lett. 13(1), 39–41 (2018)

    Article  ADS  Google Scholar 

  30. R. Asgharian, B. Zakeri, O. Karimi, Modified hexagonal triple-band metamaterial absorber with wide-angle stability. AEU Int. J. Electron. Commun. 87, 119–123 (2018)

    Article  Google Scholar 

  31. Y. Fan et al., Subwavelength electromagnetic diode: one-way response of cascading nonlinear meta-atoms. Appl. Phys. Lett. 98(15), 151903 (2011)

    Article  ADS  Google Scholar 

  32. Y. Fan et al., Electrically tunable Goos-Hänchen effect with graphene in the terahertz regime. Adv. Opt. Mater. 4(11), 1824–1828 (2016)

    Article  Google Scholar 

  33. T. Low et al., Polaritons in layered two-dimensional materials. Nat. Mater. 16(2), 182 (2017)

    Article  ADS  Google Scholar 

  34. Y. Fan et al., Graphene plasmonics: a platform for 2D optics. Adv. Opt. Mater. 7(3), 1800537 (2019)

    Article  Google Scholar 

  35. M.A. Baqir et al., Tunable plasmon induced transparency in graphene and hyperbolic metamaterial-based structure. IEEE Photon. J. 11(4), 1–10 (2019)

    Article  Google Scholar 

  36. A. Farmani, A. Mir, Graphene sensor based on surface plasmon resonance for optical scanning. IEEE Photon. Technol. Lett. 31(8), 643–646 (2019)

    Article  ADS  Google Scholar 

  37. A. Farmani, Graphene plasmonic: switching applications. Handb. Graph. Phys. Chem. Biol. 15(1), 455–505 (2019)

    Google Scholar 

  38. T. Low, P. Avouris, Graphene plasmonics for terahertz to mid-infrared applications. ACS Nano 8(2), 1086–1101 (2014)

    Article  Google Scholar 

  39. Z.Q. Li et al., Dirac charge dynamics in graphene by infrared spectroscopy. Nat. Phys. 4(7), 532–535 (2008)

    Article  Google Scholar 

  40. Q. Bao, K.P. Loh, Graphene photonics, plasmonics, and broadband optoelectronic devices. ACS Nano 6(5), 3677–3694 (2012)

    Article  Google Scholar 

  41. P. Huang et al., Tunable plasmon-induced absorption effects in a graphene-based waveguide coupled with graphene ring resonators. Opt. Commun. 410, 148–152 (2018)

    Article  ADS  Google Scholar 

  42. S. Izadshenas, A. Zakery, Z. Vafapour, Tunable slow light in graphene metamaterial in a broad terahertz range. Plasmonics 13(1), 63–70 (2018)

    Article  Google Scholar 

  43. A. Farmani, A. Zarifkar, M.H. Sheikhi, M. Miri, Design of a tunable graphene plasmonic-on-white graphene switch at infrared range. Superlatt. Microstruct. 112, 404–414 (2017)

    Article  ADS  Google Scholar 

  44. V.G. Kravets et al., Graphene-protected copper and silver plasmonics. Sci. Rep. 4, 1–8 (2014)

    Google Scholar 

  45. D.J.A. Rhind, S. Jowett, Relationship maintenance strategies in the coach-athlete relationship: the development of the COMPASS model. J. Appl. Sport Psychol. 22(1), 106–121 (2010)

    Article  Google Scholar 

  46. H. Ehrenreich, H.R. Philipp, Optical properties of Ag and Cu. Phys. Rev. 128(4), 1622 (1962)

    Article  ADS  Google Scholar 

  47. A. Farmani, M. Miri, M.H. Sheikhi, Analytical modeling of highly tunable giant lateral shift in total reflection of light beams from a graphene containing structure. Opt. Commun. 391(October), 68–76 (2017)

    Article  ADS  Google Scholar 

  48. S. Xia, X. Zhai, L. Wang, Q. Lin, S. Wen, Excitation of crest and trough surface plasmon modes in in-plane bended graphene nanoribbons. Opt. Express 24(1), 490–493 (2016)

    Article  Google Scholar 

  49. M. Moisan, Z.L.B.-M. Zakrzewski, Plasma sources based on the propagation of electromagnetic surface waves. J. Phys. D Appl. Phys. 24(7), 1025 (1991)

    Article  ADS  Google Scholar 

  50. A. Ahmadivand, S. Golmohammadi, Ultra compact (1 × 2) Y-shape optical power divider based on novel configuration of cylindrical gold nano rod and shell nanoparticles. Indian J. Phys. 89(1), 81–86 (2015)

    Article  ADS  Google Scholar 

  51. P. Tassin, T. Koschny, M. Kafesaki, C.M. Soukoulis, A comparison of graphene, superconductors and metals as conductors for metamaterials and plasmonics. Nat. Photon. 6(4), 259–264 (2012)

    Article  ADS  Google Scholar 

  52. S.I. Bozhevolnyi, V.S. Volkov, E. Devaux, T.W. Ebbesen, Channel plasmon-polariton guiding by subwavelength metal grooves. Phys. Rev. Lett. 95(4), 046802 (2005)

    Article  ADS  Google Scholar 

  53. A. Farmani, M. Miri, M.H. Sheikhi, Tunable resonant Goos-Hänchen and Imbert-Fedorov shifts in total reflection of terahertz beams from graphene plasmonic metasurfaces. J. Opt. Soc. Am. B 34(6), 1097 (2017)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Farmani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadeghi, T., Golmohammadi, S., Farmani, A. et al. Improving the performance of nanostructure multifunctional graphene plasmonic logic gates utilizing coupled-mode theory. Appl. Phys. B 125, 189 (2019). https://doi.org/10.1007/s00340-019-7305-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-019-7305-x

Navigation