Skip to main content

Advertisement

Log in

Quantitative measurements of formaldehyde in the low-temperature oxidation of iso-octane using mid-infrared absorption spectroscopy

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Time-resolved quantitative measurements of formaldehyde (HCHO) in the low-temperature oxidation of iso-octane using a rapid compression machine have been performed with mid-infrared laser absorption spectroscopy. Due to the weak interference of the broadband absorption of iso-octane, a two-color detection scheme was applied to HCHO detection. The cross-sections of HCHO and iso-octane in two colors were measured using the rapid compression machine in the temperature range of 450–737 K and pressure range of 100–700 kPa. The time-resolved quantitative HCHO profiles in the low-temperature oxidation of iso-octane at 0.77 MPa, 645 K, and an equivalence ratio of 1.0 were successfully obtained. The calculated HCHO profiles using the latest chemical kinetic model of iso-octane show the same tendency as the experimental profiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M. Mehl, J.Y. Chen, W.J. Pitz, S.M. Sarathy, C.K. Westbrook, Energ. Fuel. 25, 5215 (2011)

    Article  Google Scholar 

  2. Cross-ministerial Strategic Innovation Promotion Program. https://www.jst.go.jp/sip/event/k01_hinoca/index.html

  3. M.J. Pilling, Low-temperature combustion and autoignition: comprehensive chemical kinetics (Elsevier, Netherland, 1997)

    Google Scholar 

  4. J. Zádor, C.A. Taatjes, R.X. Fernandes, Prog. Energ. Combust. 37, 371 (2011)

    Article  Google Scholar 

  5. K. Kuwahara. H. Ando, SAE Technical Paper, 2007-01-0908 (2007)

  6. P. Oßwald, H. Güldenberg, K. Kohse-Höinghaus, B. Yang, T. Yuan, F. Qib, Combust. Flame 158, 2 (2011)

    Article  Google Scholar 

  7. H. Yamada, K. Suzaki, H. Sakanashi, N. Choi, A. Tezaki, Combust. Flame 140, 24 (2005)

    Article  Google Scholar 

  8. N. Kurimoto, B. Brumfield, X. Yang, T. Wada, P. Dievart, G. Wysocki, Y. Ju, P. Combust, Inst. 35, 457 (2015)

    Google Scholar 

  9. A. J. Donkerbroek, A. P. v. Vliet, L. M. T. Somers, P. J. M. Frijters, R. J. H. Klein-Douwel, N.J. Dam, W. L. Meerts, J. J. ter Meulen, Combust. Flame. 157, 155 (2010)

  10. R. Schießl, U. Maas, Combust. Flame 133, 19 (2003)

    Article  Google Scholar 

  11. U. Azimov, N. Kawahara, E. Tomita, Fuel 98, 164 (2012)

    Article  Google Scholar 

  12. A. Matsugi, H. Shiina, T. Oguchi, K. Takahashi, J. Phys. Chem. A 120, 2070 (2016)

    Article  Google Scholar 

  13. N.L.L. Tan, M. Djehiche, C.D. Jain, P. Dagaut, G. Dayma, Fuel 158, 248 (2015)

    Article  Google Scholar 

  14. S. Wang, D.F. Davidson, R.K. Hanson, Combust. Flame 160, 1930 (2013)

    Article  Google Scholar 

  15. R.K. Hanson, R.M. Spearrin, C.S. Goldenstein, Spectroscopy and optical diagnostics for gases (Springer, Switzerland, 2016)

    Book  Google Scholar 

  16. C.S. Goldenstein, R.M. Spearrin, J.B. Jeffries, R.K. Hanson, Prog. Energ. Combust. 60, 132 (2017)

    Article  Google Scholar 

  17. Z.E. Loparo, J.G. Lopez, S. Neupane, W.P. Partridge Jr., K. Vodopyanov, S.S. Vasu, Combust. Flame 185, 220 (2017)

    Article  Google Scholar 

  18. K. Tanaka, K. Akishima, M. Sekita, K. Tonokura, M. Konno, Appl. Phys. B 123, 219 (2017)

    Article  Google Scholar 

  19. A. B. S. Alquaity, U. K. C, A. Popov, A. Farooq, Appl. Phys. B. 123, 280 (2017)

  20. E.F. Nasir, A. Farooq, P. Combust, Inst. 36, 4453 (2017)

    Google Scholar 

  21. E.F. Nasir, A. Farooq, P. Combust, Inst. 37, 1297 (2019)

    Google Scholar 

  22. W. Ren, L. Luo, F.K. Tittel, Sensor. Actuat. B-Chem. 221, 1062 (2015)

    Article  Google Scholar 

  23. K. Tanaka, K. Miyamura, K. Akishima, K. Tonokura, M. Konno, Infrared. Phys. Techn. 79, 1 (2016)

    Article  ADS  Google Scholar 

  24. K. Tanaka, N. Isobe, K. Sato, R. Okada, H. Okada, Y. Fujisawa, M. Konno, S.A.E. Int, J. Engines 9, 39 (2016)

    Google Scholar 

  25. G. Mittal, C.J. Sung, Combust. Sci. Technol. 179, 497 (2007)

    Article  Google Scholar 

  26. A. Miyoshi, Y. Sakai, Transa. Soc. Autom. Eng. Japan 48(5), 1021 (2017) (in Japanese)

  27. I.E. Gordon, L.S. Rothman, C. Hill, R.V. Kochanov, Y. Tana, P.F. Bernath, M. Birk, V. Boudon, A. Campargue, K.V. Chance, B.J. Drouin, J.-M. Flaud, R.R. Gamache, J.T. Hodges, D. Jacquemart, V.I. Perevalovm, A. Perrin, K.P. Shine, M.-A.H. Smith, J. Tennyson, G.C. Toon, H. Tran, V.G. Tyuterev, A. Barbe, A.G. Császár, V.M. Devi, T. Furtenbacher, J.J. Harrison, J.-M. Hartmann, A. Jolly, T.J. Johnson, T. Karman, I. Kleiner, A.A. Kyuberis, J. Loos, O.M. Lyulin, S.T. Massie, S.N. Mikhailenkom, N. Moazzen-Ahmadi, H.S.P. Müller, O.V. Naumenkom, A.V. Nikitinm, O.L. Polyansky, M. Rey, M. Rotger, S.W. Sharpe, K. Sung, E. Starikovam, S.A. Tashkunm, J. VanderAuwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yuh, E.J. Zak, J. Quant. Spectrosc. Radiat. Transf 203, 3 (2017)

    Article  ADS  Google Scholar 

  28. A.E. Klingbeil, J.B. Jeffries, R.K. Hanson, Meas. Sci. Technol. 17, 1950 (2006)

    Article  ADS  Google Scholar 

  29. G. Mittal, M.P. Raju, C.J. Sung, Combust. Flame 157, 1316 (2010)

    Article  Google Scholar 

  30. N. Atef, G. Kukkadapu, S. Y. Mohamed, M. A. Rashidi, C. Banyon, M. Mehl, K. A. Heufer, E. F. Nasir, A. Alfazazi, A. K. Das, C. K. Westbrook, W. J. Pitz, T. Lu, A. Farooq, C. Sung, H. J. Curran, S. Mani Sarathy, Combust. Flame. 178, 111 (2017)

  31. M. Mehl, W.J. Pitz, C.K. Westbrook, H.J. Curran, P. Combust, Inst. 33, 193 (2011)

    Google Scholar 

  32. S. Tanaka, F. Ayala, J.C. Keck, Combust. Flame 133, 467 (2003)

    Article  Google Scholar 

  33. S. Wang, T. Parise, S.E. Johnson, D.F. Davidson, R.K. Hanson, Combust. Flame 186, 129 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This study was partly supported by the Council for Science, Technology and Innovation (CSTI), Cross-ministerial Strategic Innovation Promotion Program (SIP), “Innovative Combustion Technology” (Funding agency: JST), and JSPS Grants-in-Aid for Scientific Research (16K18023, 18K03966).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kotaro Tanaka.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanaka, K., Sugano, S., Nagata, H. et al. Quantitative measurements of formaldehyde in the low-temperature oxidation of iso-octane using mid-infrared absorption spectroscopy. Appl. Phys. B 125, 191 (2019). https://doi.org/10.1007/s00340-019-7304-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-019-7304-y

Navigation