Skip to main content
Log in

Particle distribution in transient plasmas generated by ns-laser ablation on ternary metallic alloys

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Understanding the fundamental mechanisms behind industrial laser-based technologies represents one the cornerstones of the development and tailoring of new materials. With the thin-film deposition using laser ablation being one of the most important techniques for obtaining complex materials with controllable stoichiometry, there is a high request for both experimental and theoretical studies towards understanding the behavior of multi-component alloys under high-power laser irradiation. Here we investigate the laser ablation process on two ternary metallic alloys (Cu–Mn–Al and Fe–Mn–Si) by means of space-and time-resolved optical emission spectroscopy and fast camera imaging with the focus being on the spatial distribution of each composing element. Information regarding the kinetic and thermal energy of the ejected particles is extracted and discussed in the framework of an inner structuring of the laser-produced plasmas based on a mass and energy distribution. The hypothesis is then verified by implementing a fractal analysis to the multi-component plasmas. The theoretical fractal approach offers results in good agreement with the experimental data gives important insight in the inner dynamics of complex laser-produced plasmas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A. Blug, F. Abt, L. Nicolosi, A. Heider, R. Weber, D. Carl, H. Höfler, R. Tetzlaff, Appl. Phys. B 108, 97–107 (2012)

    Article  ADS  Google Scholar 

  2. K. Deng, X. Wei, X. Wang, Y. Chen, M. Yin, Appl. Phys. B 102, 555–558 (2011)

    Article  ADS  Google Scholar 

  3. D. Bäuerle, Appl. Phys. B 46(3), 261–270 (1988)

    Article  ADS  Google Scholar 

  4. D.K. PallottiX, R. Ni, X. Fittipaldi, S. Wang, A. Lettieri, S.Amoruso Vecchione, Appl. Phys. B 119(3), 4445–4452 (2015)

    Google Scholar 

  5. J. Singh, R. Kumar, S. Awasthi, V. Singh, A.K. Rai, Food Chem. 221, 1778–1783 (2017)

    Article  Google Scholar 

  6. J. Hermann, E. Axente, F. Pelascini, V. Craciun, Anal. Chem. 91(3), 2544–2550 (2019)

    Article  Google Scholar 

  7. A. Ojeda-G-P, C.W. Schneider, M. Döbeli, T. Lippert, A. Wokaun, J. Appl. Phys. 121, 135306 (2017)

    Article  ADS  Google Scholar 

  8. A. Chehrghani, M.J. Torkamany, Opt. Laser Eng. 51, 61–68 (2013)

    Article  Google Scholar 

  9. B.D. Ngom, S. Lafane, S. Abdelli-Messaci, T. Kerdja, M. Maaza, Appl. Phys. A Mater. Sci. Process. 122, 1–7 (2016)

    Article  Google Scholar 

  10. C.R. Menegatti, G. Nicolodelli, G.S. Senesi et al., Appl. Phys. B 125, 74 (2019)

    Article  ADS  Google Scholar 

  11. L. Liu, M. Chen, Opt. Laser Eng. 49, 1124–1231 (2011)

    Article  ADS  Google Scholar 

  12. S.A. Irimiciuc, G. Bulai, S. Gurlui, M. Agop, Powder Technol. 339, 273–280 (2018)

    Article  Google Scholar 

  13. S. Irimiciuc, G. Bulai, M. Agop, S. Gurlui, Appl. Phys. A Mater. Sci. Process. 615, 1–15 (2018)

    Google Scholar 

  14. D.W. Hahn, N. Omenetto, Appl. Spectrosc. 64, 335A–366A (2010)

    Article  ADS  Google Scholar 

  15. N. Glumac, G. Elliot, Opt. Laser Eng. 45, 27–35 (2009)

    Article  Google Scholar 

  16. M. Hauer, D.J. Funk, T. Lippert, A. Wokaun, Opt. Laser Eng. 43, 545–556 (2005)

    Article  Google Scholar 

  17. K.K. Anoop, M.P. Polek, R. Bruzzese, S. Amoruso, S.S. Harilal, J. Appl. Phys. 117, 083108 (2015)

    Article  ADS  Google Scholar 

  18. S.A. Irimiciuc, I. Mihaila, M. Agop, Phys. Plasmas 21, 093509 (2014)

    Article  ADS  Google Scholar 

  19. P.K. Diwakar, S.S. Harilal, A. Hassanein, M.C. Phillips, Expansion dynamics of ultrafast laser produced plasmas in the presence of ambient argon. J. Appl. Phys. 116, 133301 (2014)

    Article  ADS  Google Scholar 

  20. S. Irimiciuc, R. Boidin, G. Bulai, S. Gurlui, P. Nemec, V. Nazabal, C. Focsa, Appl. Surf. Sci. 418, 594–600 (2017)

    Article  ADS  Google Scholar 

  21. D.B. Geohegan, MRS Proc. 285, 27 (1992)

    Article  Google Scholar 

  22. D.B. Geohegan, A.A. Puretzky, G. Duscher, S.J. Pennycook, Appl. Phys. Lett. 72, 2987–2989 (1998)

    Article  ADS  Google Scholar 

  23. S.A. Irimiciuc, S. Gurlui, P. Nica, C. Focsa, M. Agop, J. Appl. Phys. 12, 083301 (2017)

    Article  ADS  Google Scholar 

  24. G. Cristoforetti, S. Legnaioli, L. Pardini, V. Palleschi, A. Salvetti, E. Tognoni, Spectrochim. Acta Part B At. Spectrosc. 61, 340–350 (2006)

    Article  ADS  Google Scholar 

  25. J. Singh, S. Thakur, Laser induced breakdown spectroscopy (Elsevier, Amsterdam, 2007)

    Google Scholar 

  26. G. Colonna, L.D. Pietanza, M. Capitelli, Spectrochim. Acta Part B At. Spectrosc. 56, 587–589 (2001)

    Article  ADS  Google Scholar 

  27. G. Colonna, D. D’Ammando, L.D. Pietanza, M. Capitelli, Plasma Phys. Control. Fusion 57, 014009 (2015)

    Article  ADS  Google Scholar 

  28. C.P. Cristescu, Nonlinear dynamics and Chaos. Theoretical fundamental and applications (Romanian Academy Publishing, Bucharest, 2008)

    Google Scholar 

  29. B. Mandelbrot, The fractal geometry of nature (WH Freeman Publisher, New York, 1993)

    Book  Google Scholar 

  30. L. Nottale, Scale relativity and fractal space-time: an approach to unifying relativity and quantum mechanics (Imperial College Press, London, 2011)

    Book  Google Scholar 

  31. I. Merches, M. Agop, Differentiability and fractality in dynamics of physical systems (World Scientific Publisher, Singapore, 2016)

    MATH  Google Scholar 

  32. M. Agop, V.P. Paun, On the new paradigm of fractal theory. Fundamental and applications (Romanian Academy Publishing House, Bucharest, 2017)

    Google Scholar 

  33. M. Agop, I. Merches, Operational procedures describing physical systems (CRC Press Taylor and Francis Group, London, 2019)

    MATH  Google Scholar 

Download references

Acknowledgements

This work has been funded by the National Authority for Scientific Research and Innovation in the framework of Nucleus Program—16N/2019

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Andrei Irimiciuc.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Irimiciuc, S.A., Gurlui, S. & Agop, M. Particle distribution in transient plasmas generated by ns-laser ablation on ternary metallic alloys. Appl. Phys. B 125, 190 (2019). https://doi.org/10.1007/s00340-019-7302-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-019-7302-0

Navigation