Skip to main content
Log in

Terahertz modulator a using CsPbBr3 perovskite quantum dots heterostructure

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

A novel terahertz wave modulator based on CsPbBr3 perovskite quantum dots heterostructure is proposed. An external modulated 450 nm pumping laser is utilized to generate photoexcited free carriers at the CsPbBr3 perovskite quantum dots heterostructure medium. We measured an amplitude modulation of the terahertz transmission in the frequency range from 0.23 to 0.35 THz with various laser intensity irradiances. In addition, dynamic amplitude modulation at 0.27 THz carrier wave show that the modulator provides a modulation speed of 2.5 MHz at a external pump laser irradiance of 2.0 W/cm2. Our CsPbBr3 perovskite quantum dots heterostructure can high speed modulation and can be used for terahertz modulation in addition to photovoltaics application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. H.T. Chen, W.J. Padilla, M.J. Cich, A.K. Azad, R.D. Averitt, A.J. Taylor, A metamaterial solid-state terahertz phase modulator. Nat. Photon. 3, 148 (2009)

    Article  ADS  Google Scholar 

  2. P.H. Siegel, Terahertz technology in biology and medicine. IEEE Trans. Microw. Theory Tech. 52, 2438 (2004)

    Article  ADS  Google Scholar 

  3. H.T. Chen, S. Palit, T. Tyler, C.M. Bingham, J.M.O. Zide, J.F. O’Hara, D.R. Smith, A.C. Gossard, R.D. Averitt, W.J. Padilla, N.M. Jokerst, A.J. Taylor, Hybrid metamaterials enable fast electrical modulation of freely propagating terahertz waves. Appl. Phys. Lett. 93, 091117 (2008)

    Article  ADS  Google Scholar 

  4. H.T. Chen, W.J. Padilla, J.M.O. Zide, A.C. Gossard, A.J. Taylor, R.D. Averitt, Active terahertz metamaterial devices. Nature 444, 597–600 (2006)

    Article  ADS  Google Scholar 

  5. J. Li, J. Yao, Novel optical controllable terahertz wave switch. Opt. Commun. 281, 5697–5700 (2008)

    Article  ADS  Google Scholar 

  6. S. Savo, D. Shrekenhamer, W.J. Padilla, Liquid crystal metamaterial absorber spatial light modulator for THz applications. Adv. Opt. Mater. 2, 275–279 (2014)

    Article  Google Scholar 

  7. D.Shrekenhamer, S.Rout, A.C., C. Strikwerda, R.D. Bingham, S.Sonkusale Averitt, W.J. Padilla, High speed terahertz modulation from metamaterials with embedded high electron mobility transistors. Opt. Express 19, 9968–9975 (2011)

    Article  ADS  Google Scholar 

  8. L. Fekete, F. Kadlec, P. Kužel, H. Neˇmec, Ultrafast opto-terahertz photonic crystal modulator. Opt. Lett. 32, 680 (2007)

    Article  ADS  Google Scholar 

  9. H.T. Chen, J.F. O’Hara, A.K. Azad, A.J. Taylor, R.D. Averitt, D.B. Shrekenhamer, W.J. Padilla, Experimental demonstration of frequency-agile terahertz metamaterials. Nat. Photonics 2, 295–298 (2008)

    Article  Google Scholar 

  10. H.T. Chen, H. Yang, R. Singh, J.F. O’Hara, A.K. Azad, S.A. Trugman, Q.X. Jia, A.J. Taylor, Tuning the resonance in high-temperature superconducting terahertz metamaterials. Phys. Rev. Lett. 105, 247402 (2010)

    Article  ADS  Google Scholar 

  11. N.H. Shen, M. Kafesaki, T. Koschny, L. Zhang, E.N. Economou, C.M. Soukoulis, Broadband blueshift tunable metamaterials and dual-band switches. Phys. Rev. B 79, 161102(R) (2009)

    Article  ADS  Google Scholar 

  12. B.S. Rodriguez, R. Yan, M.M. Kelly, T. Fang, K. Tahy, W. Hwang, D. Jena, L. Liu, H. Xing, Broadband graphene terahertz modulators enabled by intraband transitions. Nat Commun 3, 780–786 (2012)

    Article  Google Scholar 

  13. R. Degl’Innocenti, D.S. Jessop, Y.D. Shah, J. Sibik, J.A. Zeitler, P.R. Kidambi, S. Hofmann, H.E. Beere, D.A. Ritchie, Low-bias terahertz amplitude modulator based on split-ring resonators and graphene. ACS Nano 8(3), 2548–2554 (2014)

    Article  Google Scholar 

  14. M. Mittendorff, S. Li, T.E. Murphy, Graphene-based waveguide-Integrated terahertz modulator. ACS Photonics 4(2), 316–321 (2017)

    Article  Google Scholar 

  15. Y. Zhao, C. Chen, X. Pan, Y. Zhu, M. Holtz, A. Bernussi, Z. Fan, Tuning the properties of VO2 thin films through growth temperature for infrared and terahertz modulation applications. J. Appl. Phys. 114, 113509 (2013)

    Article  ADS  Google Scholar 

  16. T. Matsui, R. Takagi, K. Takano, M. Hangyo, Mechanism of optical terahertz-transmission modulation in an organic/inorganic semiconductor interface and its application to active metamaterials. Opt. Lett. 38, 4632–4635 (2013)

    Article  ADS  Google Scholar 

  17. L. Zhong, B. Zhang, T. He, L. Lv, Y. Hou, J. Shen, Conjugated polymer based active electric-controlled terahertz device. Appl. Phys. Lett. 108, 103301 (2016)

    Article  ADS  Google Scholar 

  18. H.K. Yoo, S.G. Lee, C. Kang, C.S. Kee, J.W. Lee, Terahertz modulation on angle-dependent photoexcitation in organic/inorganic hybrid structures. Appl. Phys. Lett. 103, 151116 (2013)

    Article  ADS  Google Scholar 

  19. C.L. Li, Z.G. Zang, C. Han, Z.P. Hu, X.S. Tang, J. Du, Y.X. Leng, K. Sun, Highly compact CsPbBr3 perovskite thin films decorated by ZnO nanoparticles for enhanced random lasing. Nano Energy 40, 195–202 (2017)

    Article  Google Scholar 

  20. C.L. Li, Z.G. Zang, W.W. Chen, Z.P. Hu, X.S. Tang, W. Hu, K. Sun, X.M. Liu, W.M. Chen, Highly pure green light emission of perovskite CsPbBr3 quantum dots and their application for green light-emitting diodes. Opt. Express 24, 15071–15078 (2016)

    Article  ADS  Google Scholar 

  21. Q. Wen, W. Tian, Q. Mao, Z. Chen, W. Liu, Q. Yang, M. Sanderson, H. Zhang, Graphene based all-optical spatial terahertz modulator. Sci. Rep. 4, 7409 (2014)

    Article  Google Scholar 

  22. B. Sensale-Rodriguez, R. Yan, S. Rafique, M. Zhu, W. Li, X. Liang, D. Gundlach, V. Protasenko, M. Kelly, D. Jena, L. Liu, H.G. Xing, Extraordinary control of terahertz beam reflectance in graphene electro-absorption modulators. Nano Lett. 12, 4518–4522 (2012)

    Article  ADS  Google Scholar 

  23. M. Unlu, M. Hashemi, C. Berry, S. Li, S. Yang, M. Jarrahi, Switchable scattering meta-surfaces for broadband terahertz modulation. Sci. Rep. 4, 5708 (2014)

    Article  Google Scholar 

  24. P.Q. Liu, I.J. Luxmoore, S.A. Mikhailov, N.A. Savostianova, F. Valmorra, J. Faist, G.R. Nash, Highly tunable hybrid metamaterial employing split-ring resonators strongly coupled to graphene surface plasmons. Nat. Commun. 6, 8969 (2015)

    Article  ADS  Google Scholar 

  25. X. Li, D. Bi, C. Yi, J.D. Décoppet, J. Luo, S.M. Zakeeruddin, A. Hagfeldt, M. Grätzel, A vacuum flash-assisted solution process for high-efficiency large-area perovskite solar cells. Science 353, 58–62 (2016)

    Article  ADS  Google Scholar 

  26. G. Niu, X. Guo, L. Wang, Review of recent progress in chemical stability of perovskite solar cells. J. Mater. Chem. A 3, 8970–8980 (2015)

    Article  Google Scholar 

  27. F. Zhang, H. Zhong, C. Chen, X. Wu, X. Hu, H. Huang, J. Han, B. Zou, Y. Dong, Brightly luminescent and color tunable colloidal CH3NH3PbX3(X = Br, I, Cl) quantum dots: potential alternatives for display technology. ACS Nano 9, 4533–4542 (2015)

    Article  Google Scholar 

  28. H. Yoon, H. Kang, S. Lee, J. Oh, H. Yang, Y. Do, Study of perovskite QD down-converted LEDs and six-color white LEDs for future displays with excellent color performance. ACS Appl. Mater. Interfaces 8, 18189–18200 (2016)

    Article  Google Scholar 

  29. H. Zhu, Y. Fu, F. Meng, X. Wu, Z. Gong, Q. Ding, M.V. Gustafsson, M.T. Trinh, S. Jin, X.Y. Zhu, Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. Nat. Mater. 14, 636–642 (2015)

    Article  ADS  Google Scholar 

  30. Y. Lee, J. Kwon, E. Hwang, C.H. Ra, W.J. Yoo, J.H. Ahn, J.H. Park, J.H. Cho, High-performance perovskite-graphene hybrid photodetector. Adv. Mater. 27, 41–46 (2015)

    Article  Google Scholar 

  31. H.R. Xia, J. Li, W.T. Sun, L.M. Peng, Organohalide lead perovskite based photodetectors with much enhanced performance. Chem. Commun. 50, 13695–13697 (2014)

    Article  Google Scholar 

  32. S. Stranks, G. Eperon, G. Grancini, C. Menelaou, M. Alcocer, T. Leijtens, L. Herz, A. Petrozza, H. Snaith, Electron–hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342, 341–344 (2013)

    Article  ADS  Google Scholar 

  33. S. Veldhuis, P. Boix, N. Yantara, M. Li, T. Sum, N. Mathews, S. Mhaisalkar, Perovskite materials for light-emitting diodes and lasers. Adv. Mater. 28, 6804–6834 (2016)

    Article  Google Scholar 

  34. N. Jeon, J. Noh, W. Yang, Y. Kim, S. Ryu, J. Seo, S. Seok, Compositional engineering of perovskite materials for high-performance solar cells. Nature 517, 476–480 (2015)

    Article  ADS  Google Scholar 

  35. Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao, J. Huang, Solar cells. Electron hole diffusion lengths> 175 mm in solution-grown CH3NH3PbI3 single crystals. Science 347, 967–970 (2015)

    Article  ADS  Google Scholar 

  36. C. Wehrenfennig, G.E. Eperon, M.B. Johnston, H.J. Snaith, L.M. Herz, High charge carrier mobilities and lifetimes in organolead trihalide perovskites. Adv. Mater. 26, 1584–1589 (2014)

    Article  Google Scholar 

  37. A. Chanana, Y. Zhai, S. Baniya, C. Zhang, Z.V. Vardeny, A. Nahata, Colour selective control of terahertz radiation using two-dimensional hybrid organic inorganic lead-trihalide perovskites. Nat. Commun. 8, 1328 (2017)

    Article  ADS  Google Scholar 

  38. X. Wu, M.T. Trinh, D. Niesner, H. Zhu, Z. Noman, J.S. Owen, O. Yaffe, B.J. Kudisch, X.Y. Zhu, Trap states in lead iodide perovskites. J. Am. Chem. Soc. 137, 2089–2096 (2015)

    Article  Google Scholar 

  39. D.B. Mitzi, C.A. Feild, W.T.A. Harrison, A.M. Guloy, Conducting tin halides with a layered organic-based perovskite structure. Nature 369, 467–469 (1994)

    Article  ADS  Google Scholar 

  40. Q. Akkerman, V. D’Innocenzo, S. Accornero, A. Scarpellini, A. Petrozza, M. Prato, L. Manna, Tuning the optical properties of cesium lead halide perovskite nanocrystals by anion exchange reactions. J. Am. Chem. Soc. 137, 10276–10281 (2015)

    Article  Google Scholar 

  41. S. Sun, D. Yuan, Y. Xu, A. Wang, Z. Deng, Ligand-mediated synthesis of shape controlled cesium lead halide perovskite nanocrystals via reprecipitation process at room temperature. ACS Nano 10, 3648–3657 (2016)

    Article  Google Scholar 

  42. D. Zhang, S. Eaton, Y. Yu, L. Dou, P. Yang, Solution-phase synthesis of cesium lead halide perovskite nanowires. J. Am. Chem. Soc. 137, 9230–9233 (2015)

    Article  Google Scholar 

  43. J. Maes, L. Balcaen, E. Drijvers, Q. Zhao, J. De Roo, A. Vantomme, F. Vanhaecke, P. Geiregat, Z. Hens, Light absorption coefficient of CsPbBr3 Perovskite nanocrystals. J. Phys. Chem. Lett. 9(11), 3093–3097 (2018)

    Article  Google Scholar 

  44. A. Singh, A. Uddin, T. Sudarshan, G. Koley, Tunable reverse-biased graphene/silicon heterojunction Schottky diode sensor. Small 10(8), 1555–1565 (2014)

    Article  Google Scholar 

  45. J. Ahn, H. Park, M.A. Mastro, J.K. Hite, C.R. Eddy Jr., J. Kim, Nanostructured n-ZnO/thin film p-silicon heterojunction light-emitting diodes. Opt. Express 19(27), 26006–26010 (2011)

    Article  ADS  Google Scholar 

  46. M. Liang, Z.R. Wu, L.W. Chen, L. Song, P. Ajayan, H. Xin, Terahertz characterization of single-walled carbon nanotube and graphene on-substrate thin films. IEEE Trans. Microw. Theory Tech. 59, 2719–2725 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from National Natural Science Foundation of China (Grant nos. 61871355, 61831012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Jiu-sheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao-he, L., Jiu-sheng, L. Terahertz modulator a using CsPbBr3 perovskite quantum dots heterostructure. Appl. Phys. B 124, 224 (2018). https://doi.org/10.1007/s00340-018-7094-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-018-7094-7

Navigation