Skip to main content
Log in

Gain anticipation of Ho3+ in ion-exchangeable germanate waveguide glasses

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Efficient infrared emissions at ~ 1.2 and ~ 2.0 µm were recorded in Ho3+-single-doped and Ho3+/Yb3+-co-doped aluminum germanate glasses (NMAG), respectively. The maximum stimulated emission cross-sections for the ~ 1.2- and ~ 2.0 µm emissions were derived to be 2.3 × 10−21 and 5.8 × 10−21 cm2, respectively; then the gain cross-sections were further evaluated and the effective gains have been anticipated. In addition, the channel waveguide fabricated by K+–Na+ ion-exchanged method exhibited a complete single mode at 1.55 µm and the field diameters were identified to be horizontally 10.6 µm and vertically 6.7 µm. Effective amplified spontaneous emission at ~ 2.0 µm was recorded under 980 nm laser pumping. Broad bandwidth, large emission cross-section and perfect thermal ion-exchangeability indicate that Ho3+- and Yb3+-doped NMAG glasses are promising for the development of optical amplifier, tunable laser and light source operating at ~ 1.2 and ~ 2.0 µm.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S.A. Veldhuis, P.P. Boix, N. Yantara, M. Li, T.C. Sum, N. Mathews, S.G. Mhaisalkar, Perovskite materials for light-emitting diodes and lasers. Adv. Mater. 28(32), 6804–6834 (2016)

    Article  Google Scholar 

  2. M.K. Gnanasammandhan, N.M. Idris, A. Bansal, K. Huang, Y. Zhang, Near-IR photoactivation using mesoporous silica-coated NaYF4: Yb, Er/Tm upconversion nanoparticles. Nat. Protoc. 11(4), 688–713 (2016)

    Article  Google Scholar 

  3. J.C. Tung, P.H. Tuan, H.C. Liang, K.F. Huang, Y.F. Chen, Fractal frequency spectrum in laser resonators and three-dimensional geometric topology of optical coherent waves. Phys. Rev. A 94(2), 023811 (2016)

    Article  ADS  Google Scholar 

  4. J. Ruan, Y. Chi, X. Liu, G. Dong, G. Lin, D. Chen, E. Wu, J. Qiu, Enhanced near-infrared emission and broadband optical amplification in Yb-Bi co-doped germanosilicate glasses. J. Phys. D:Appl. Phys. 42(15), 155102 (2009)

    Article  ADS  Google Scholar 

  5. S.D. Jackson, Towards high-power mid-infrared emission from a fibre laser. Nat. Photon. 6(7), 423–431 (2012)

    Article  ADS  Google Scholar 

  6. T. Wang, D. Zhao, M. Zhang, J. Yin, W. Song, Z. Jia, X. Wang, G. Qin, W. Qin, F. Wang, D. Zhang, Optical waveguide amplifiers based on NaYF4: Er3+, Yb3+ NPs-PMMA covalent-linking nanocomposites. Opt. Mater. Express 5(3), 469–478 (2015)

    Article  ADS  Google Scholar 

  7. D.S.D. Silva, L.P. Naranjo, L.R.P. Kassab, C.B.D. Araújo, Photoluminescence from germanate glasses containing silicon nanocrystals and erbium ions. Appl. Phys. B-Lasers O. 106(4), 1015–1018 (2012)

    Article  ADS  Google Scholar 

  8. J. Geng, Q. Wang, Y. Lee, S. Jiang, Development of eye-safe fiber lasers near 2 µm. IEEE J. Sel. Top. Quantum 20(5), 150–160 (2014)

    Article  Google Scholar 

  9. H. Lin, D. Chen, Y. Yu, A. Yang, Y. Wang, Near-infrared quantum cutting in Ho3+/Yb3+ co-doped nanostructured glass ceramic. Opt. Lett. 36(6), 876–878 (2011)

    Article  ADS  Google Scholar 

  10. Z. Zhao, C. Liu, M. Xia, Q. Yin, X. Zhao, J. Han, Intense ∼1.2 µm emission from Ho3+/Y3+ ions co-doped oxyfluoride glass-ceramics containing BaF2 nanocrystals. J. Alloy. Compd. 701, 392–398 (2017)

    Article  Google Scholar 

  11. J.P. Zhang, W.J. Zhang, J. Yuan, Q. Qian, Q.Y. Zhang, Enhanced 2.0 µm emission and lowered upconversion emission in fluorogermanate glass-ceramic containing LaF3: Ho3+/Yb3+ by codoping Ce3+ ions. J. Am. Ceram. Soc. 96(12), 3836–3841 (2013)

    Article  Google Scholar 

  12. M. Kochanowicz, J. Żmojda, P. Miluski, T. Ragin, W.A. Pisarski, J. Pisarska, R. Jadach, M. Sitarz, D. Dorosz, Structural and luminescent properties of germanate glasses and double-clad optical fiber co-doped with Yb3+/Ho3+. J. Alloy. Compd. 727, 1221–1226 (2017)

    Article  Google Scholar 

  13. J. Fan, Y. Fan, Y. Yang, D. Chen, L. Calveza, X. Zhang, L. Zhang, Spectroscopic properties and energy transfer in Yb3+-Ho3+ co-doped germanate glass emitting at 2.0 µm. J. Non Cryst. Solids 357(11–13), 2431–2434 (2011)

    Article  ADS  Google Scholar 

  14. W.J. Zhang, Q.J. Chen, Q. Qian, Q.Y. Zhang, The 1.2 and 2.0 µm emission from Ho3+ in glass ceramics containing BaF2 nanocrystals. J. Am. Ceram. Soc. 95(2), 663–669 (2012)

    Article  Google Scholar 

  15. J. Wang, X. Zhu, Y. Ma, Y. Wang, M. Tong, S. Fu, J. Zong, K. Wiersma, A. Chavez-Pirson, R. Norwood, N. Peyghambarian, Compact CNT mode-locked Ho3+-doped fluoride fiber laser at 1.2 µm. IEEE J. Sel. Top. Quantum 24(3), 1–5 (2018)

    Google Scholar 

  16. M. Seshadri, L.C. Barbosa, M. Radha, Study on structural, optical and gain properties of 1.2 and 2.0 µm emission transitions in Ho3+ doped tellurite glasses. J. Non Cryst. Solids 406(1), 62–72 (2014)

    Article  ADS  Google Scholar 

  17. T. Zhu, G. Tang, X. Chen, M. Sun, Q. Qian, D. Chen, Z. Yang, Two micrometer fluorescence emission and energy transfer in Yb3+/Ho3+ co-doped lead silicate glass. Int. J. Appl. Glass Sci. 8(2), 196–203 (2017)

    Article  Google Scholar 

  18. Y.C. Wang, X.S. Zhu, C.X. Sheng, L. Li, Q. Chen, J. Zong, K. Wiersam, A. Chavez-Pirson, SESAM Q-switched Ho3+-doped ZBLAN fiber laser at 1190 nm. IEEE Photonic Technol. 29(9), 743–746 (2017)

    Article  ADS  Google Scholar 

  19. M. Wanner, M. Avram, D. Gagnon, M.C.M. Jr, D. Zurakowski, K. Watanabe, Z. Tannous, R.R. Anderson, D. Manstein, Effects of non-invasive 1.210 nm laser exposure on adipose tissue: Results of a human pilot study. Laser Surg. Med. 41(6), 401–407 (2009)

    Article  Google Scholar 

  20. X.Z. Yang, L. Zhang, Y. Feng, X.S. Zhu, R.A. Norwood, N. Peyghambarian, Mode-locked Ho3+-doped ZBLAN fiber laser at 1.2 µm. J. Lightwave Technol. 34(18), 4266–4270 (2016)

    Article  ADS  Google Scholar 

  21. Y. Li, Z. Song, Z. Yin, Q. Kuang, R. Wan, Y. Zhou, Q. Liu, J. Qiu, Z. Yang, Investigation on the upconversion emission in 2D BiOBr: Yb3+/Ho3+ nanosheets. Spectrochim. Acta A 150, 135–141 (2015)

    Article  Google Scholar 

  22. X. Yang, L. Zhang, Y. Feng, X. Zhu, R.A. Norwood, N. Peyghambarian, Mode-locked Ho3+-doped ZBLAN fiber laser at 1.2 µm. J. Lightwave Technolo. 34(18), 4266–4270 (2016)

    Article  ADS  Google Scholar 

  23. G.J. Gao, G.N. Wang, C.L. Yu, J.J. Zhang, L.L. Hu, Investigation of 2.0 µm emission in Tm3+ and Ho3+ co-doped oxyfluoride tellurite glass. J. Lumin. 129(9), 1042–1047 (2009)

    Article  Google Scholar 

  24. S. Yang, H. Xia, Y. Jiang, Y. Jiang, J. Zhang, Y. Shi, X. Gu, J. Zhang, Y. Zhang, H. Jiang, B. Chen, Tm3+ doped α-NaYF4 single crystal for 2 µm laser application. J. Alloy. Compd. 643, 1–6 (2015)

    Article  Google Scholar 

  25. Z. Feng, S. Yang, H. Xia, C. Wang, D. Jiang, J. Zhang, X. Gu. Y. Zhang, B. Chen, H. Jiang, Energy transfer and 2.0 µm emission in Tm3+/Ho3+ co-doped α-NaYF4 single crystals. Mater. Res. Bull. 76, 279–283 (2016)

    Article  Google Scholar 

  26. Y. Tian, X. Jing, S. Xu, Spectroscopic analysis and efficient diode-pumped 2.0 µm emission in Ho3+/Tm3+ codoped fluoride glass. Spectrochim. Acta A. 115, 33–38 (2013)

    Article  ADS  Google Scholar 

  27. C.S. Rao, K.U. Kumar, P. Babu, C.K. Jayasankar, Optical properties of Ho3+ ions in lead phosphate glasses. Opt. Mater. 35(2), 102–107 (2012)

    Article  ADS  Google Scholar 

  28. J.S. Sanghera, I.D. Aggarwal, Active and passive chalcogenide glass optical fibers for IR applications: a review. J. Non-Cryst. Solids 256, 6–16 (1999)

    Article  ADS  Google Scholar 

  29. J. Xia, Y. Tian, B. Li, L. Zheng, X. Jing, J. Zhang, S. Xu, Enhanced 2.0 µm emission in Ho3+/Yb3+ co-doped silica-germanate glass. Infrared Phys. Technol. 81, 17–20 (2017)

    Article  ADS  Google Scholar 

  30. E. Álvarez, M.E. Zayas, J. Alvarado-Rivera, F. Félix-Domínguez, R.P. Duarte-Zamorano, U. Caldiño, New reddish-orange and greenish-yellow light emitting phosphors: Eu3+ and Tb3+/Eu3+ in sodium germanate glass. J. Lumin. 153(3), 198–202 (2014)

    Article  Google Scholar 

  31. W.A. Pisarski, J. Pisarska, D. Dorosz, J. Dorosz, Towards lead-free oxyfluoride germanate glasses singly doped with Er3+ for long-lived near-infrared luminescence. Mater. Chem. Phys. 148(3), 485–489 (2014)

    Article  Google Scholar 

  32. A.I. Chernov, B.I. Denker, R.P. Ermakov, B.I. Galagan, L.D. Iskhakova, S.E. Sverchkov, V.V. Velmiskin, E.M. Dianov, Synthesis and photoluminescent properties of SnO-containing germanate and germanosilicate glasses. Appl. Phys. B-Lasers O. 122(9), 243 (2016)

    Article  ADS  Google Scholar 

  33. J. Yuan, S.X. Shen, D.D. Chen, Q. Qian, M.Y. Peng, Q.Y. Zhang, Efficient 2.0 µm emission in Nd3+/Ho3+ co-doped tungsten tellurite glasses for a diode-pump 2.0 µm laser. J. Appl. Phys. 113(7), 173507 (2013)

    Article  ADS  Google Scholar 

  34. S. Yamamoto, T. Yamaga, Y. Sakai, T. Ishida, S. Nakasone, Association between physical performance and cardiovascular events in patients with coronary artery disease: protocol for a meta-analysis. Syst. Rev. 5(1), 32 (2016)

    Article  Google Scholar 

  35. R.A. Brown, E. Shantsila, C. Varma, G.Y.H. Lip, Epidemiology and pathogenesis of diffuse obstructive coronary artery disease: the role of arterial stiffness, shear stress, monocyte subsets and circulating microparticles. Ann. Med. 48(6), 444–455 (2016)

    Article  Google Scholar 

  36. A. Dou, L. Shen, N. Wang, Y. Cai, M. Cai, Y. Guo, F. Huang, Y. Tian, S. Xu, J. Zhang, Investigation of Tm3+/Yb3+ co-doped germanate–tellurite glasses for efficient 2 µm mid-infrared laser materials. Appl. Phys. B Lasers O. 124(5), 86 (2018)

    Article  ADS  Google Scholar 

  37. F. Zhang, Z. Bi, J. Chen, A. Huang, Y. Zhu, B. Chen, Z. Xiao, Spectroscopic investigation of Er3+ in fluorotellurite glasses for 2.7 µm luminescence. J. Alloy. Compd. 649, 1191–1196 (2015)

    Article  Google Scholar 

  38. R. Cao, M. Cai, Y. Lu, Y. Tian, F.F. Huang, S.Q. Xu, J.J. Zhang, Ho3+/Yb3+ codoped silicate glasses for 2 µm emission performances. Appl. Opt. 55(8), 2065–2070 (2016)

    Article  ADS  Google Scholar 

  39. C.R. Kesavulu, H.J. Kim, S.W. Lee, J. Kaewkhao, N. Wantana, S. Kothan, S. Kaewjaeng, Optical spectroscopy and emission properties of Ho3+-doped gadolinium calcium silicoborate glasses for visible luminescent device applications. J. Non-Cryst. Solids 474, 50–57 (2017)

    Article  ADS  Google Scholar 

  40. A. Speghini, M. Peruffo, M. Casarin, D. Ajò, M. Bettinelli, Electronic spectroscopy of trivalent lanthanide ions in lead zinc borate glasses. J. Alloy. Compd. 300–301, 174–179 (2000)

    Article  Google Scholar 

  41. Q. Zhang, G. Chen, G. Zhang, J. Qiu, D. Chen, Spectroscopic properties of Ho3+/Yb3+ codoped lanthanum aluminum germanate glasses with efficient energy transfer. J. Appl. Phys. 106(11), 113102 (2009)

    Article  ADS  Google Scholar 

  42. J. Yuan, S.X. Shen, D.D. Chen, Q. Qian, M.Y. Peng, Efficient 2.0 µm emission in Nd3+/Ho3+ co-doped tungsten tellurite glasses for a diode-pump 2.0 µm laser. J. Appl. Phys. 113(17), 173507 (2013)

    Article  ADS  Google Scholar 

  43. S.B. Rai, A.K. Singh, S.K. Sing, Spectroscopic properties of Ho3+ ions doped in tellurite glass. Spectrochim. Acta A 59(14), 3221–3226 (2003)

    Article  ADS  Google Scholar 

  44. G. Bai, Y. Guo, Y. Tian, L. Hu, J. Zhang, Light emission at 2 µm from Ho3+/Tm3+/Yb3+ co-doped silicate glasses. Opt. Mater. 33(8), 1316–1319 (2011)

    Article  ADS  Google Scholar 

  45. Y. Tian, L. Zhang, S. Feng, R. Xu, L. Hu, J. Zhang, 2 µm emission of Ho3+ doped fluorophosphate glass sensitized by Yb3+. Opt. Mater. 32(11), 1508–1513 (2010)

    Article  ADS  Google Scholar 

  46. X. Wang, H. Lin, D. Yang, L. Lin, E.Y.B. Pun, Optical transitions and upconversion fluorescence in Ho3+/Yb3+ doped bismuth tellurite glasses. J. Appl. Phys. 101(11), 113535 (2007)

    Article  ADS  Google Scholar 

  47. B. Zhou, E.Y.B. Pun, H. Lin, D. Yang, L. Huang, Judd-Ofelt analysis, frequency upconversion, and infrared photoluminescence of Ho3+-doped and Ho3+/Yb3+-codoped lead bismuth gallate oxide glasses. J. Appl. Phys. 106(10), 103–105 (2009)

    Article  Google Scholar 

  48. J. Zhang, N. Wang, Y. Guo, M. Cai, Y. Tian, F. Huang, S. Xu, Tm3+-doped lead silicate glass sensitized by Er3+ for efficient ∼2 µm mid-infrared laser material. Spectrochim. Acta A. 199, 65–70 (2018)

    Article  ADS  Google Scholar 

  49. P. Loiko, X. Mateos, E. Dunina, A. Kornienko, A. Voiokitina, E. Vilejshikova, J.M. Serres, A. Baranov, K. Yumashev, M. Aguiló, F. Díaz, Judd-Ofelt modelling and stimulated-emission cross-sections for Tb3+ ions in monoclinic KYb(WO4)2 crystal. J. Lumin. 190, 37–44 (2017)

    Article  Google Scholar 

  50. E.S. Yousef, Er3+ ions doped tellurite glasses with high thermal stability, elasticity, absorption intensity, emission cross section and their optical application, J. Alloy. Compd. 561, 234–240 (2013)

    Article  Google Scholar 

  51. T. Schweizer, B.N. Samson, J.R. Hector, W.S. Brocklesby, D.W. Hewak, D.N. Payne, Infrared emission from holmium doped gallium lanthanum sulphide glass. Infrared Phys. Technol. 40(4), 329–335 (1999)

    Article  ADS  Google Scholar 

  52. B. Zhou, D.L. Yang, H. Lin, E.Y.B. Pun, Emissions of 1.20 and 1.38 µm from Ho3+-doped lithium–barium–bismuth–lead oxide glass for optical amplifications. J. Non-Cryst. Solids 357(11–13), 2468 (2011)

    Article  ADS  Google Scholar 

  53. K. Biswas, A.D. Sontakke, R. Sen, K. Annapurna, Enhanced 2 µm broad-band emission and NIR to visible frequency up-conversion from Ho3+/Yb3+ co-doped Bi2O3–GeO2–ZnO glasses. Spectrochim. Acta A 112, 301–308 (2013)

    Article  ADS  Google Scholar 

  54. F.K. William, L.L. Chase, Ground-state depleted solid-state lasers: principles, characteristics and scaling. Opt. Quantum Electron. 22(1), S1–S22 (1990)

    Article  Google Scholar 

  55. S.I. Najafi, Optical behavior of potassium ion-exchanged glass waveguides. Appl. Opt. 27(17), 3728–3731 (1988)

    Article  ADS  Google Scholar 

  56. F. Wang, B. Chen, E.Y.B. Pun, H. Lin, Alkaline aluminum phosphate glasses for thermal ion-exchanged optical waveguide. Opt. Mater. 42, 484–490 (2015)

    Article  ADS  Google Scholar 

  57. J.E. Gortych, D.G. Hall, Fabrication of planar optical waveguides by K+ ion exchange in BK7 glass. Opt. Lett. 11(2), 100–102 (1986)

    Article  ADS  Google Scholar 

  58. D.L. Yang, E.Y.B. Pun, B.J. Chen, H. Lin, Radiative transitions and optical gains in Er3+/Yb3+ codoped acid-resistant ion exchanged germanate glass channel waveguides. J. Opt. Soc. Am. B. 26(2), 357–363 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Natural Science Foundation of Liaoning Province, China (2015020187) and the Research Grants Council of Hong Kong, China (CityU 11218018).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to X. Zhao or H. Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, B.J., Yang, J.X., Pun, E.Y.B. et al. Gain anticipation of Ho3+ in ion-exchangeable germanate waveguide glasses. Appl. Phys. B 124, 226 (2018). https://doi.org/10.1007/s00340-018-7085-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-018-7085-8

Navigation