Applied Physics B

, 124:106 | Cite as

Third harmonic from air breakdown plasma induced by nanosecond laser pulses

Article
  • 26 Downloads

Abstract

Harmonic generation is a nonlinear optical effect consisting in frequency up-conversion of intense laser radiation when phase-matching conditions are fulfilled. Here, we study the mechanisms involved in the third harmonic (TH) generation process, the conversion efficiency, and the properties of TH radiation generated in air by focusing infrared linearly polarized nanosecond laser pulses at intensities of the order of TW/cm2. By analyzing the emission from the air breakdown plasma, we demonstrate that filamentary breakdown plasma containing molecular nitrogen ions acts as an optical nonlinear medium enabling generation of TH radiation in the axial direction. The data reveal important properties of the TH radiation: maximum conversion efficiency of 0.04%, sinc2 dependence of the TH intensity on the square root of the pump intensity, and three times smaller divergence and pulse duration of TH as compared to the pump radiation.

Notes

Acknowledgements

This research was supported by the Romanian Government through the CAPACITIES/RO-CERN project, Grant ELI-NP, E/04 HHGDE (contract number 04/27.06.2014), and through CNDI-UEFISCDI project, Grant PN-II-PT-PCCA-2011-3.1-0886 UFOUV (contract number 1/2012).

References

  1. 1.
    R.W. Boyd, Nonlinear Optics (Academic Press, New York, 2008)Google Scholar
  2. 2.
    Y.R. Shen, The Principles of Non-linear Optics (Wiley, Hoboken, 2003)Google Scholar
  3. 3.
    D. Kartashov et al., Opt. Lett. 37, 2268–2270 (2012)ADSCrossRefGoogle Scholar
  4. 4.
    C. Rodriguez et al., Opt. Express 19, 16115 (2011)ADSCrossRefGoogle Scholar
  5. 5.
    F. Krausz, Rev. Mod. Phys. 81, 163 (2009)ADSCrossRefGoogle Scholar
  6. 6.
    P.B. Corkum, F. Krausz, Nat. Phys. 3, 381 (2007)CrossRefGoogle Scholar
  7. 7.
    D. Linde, Appl. Phys. B 68, 315–319 (1999)ADSCrossRefGoogle Scholar
  8. 8.
    I.B. Foldes et al., Laser Part. Beams 21, 517–521 (2003)ADSCrossRefGoogle Scholar
  9. 9.
    P. Heissler et al., Appl. Phys. B 101, 511–521 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    B. Dromey et al., Nat Phys. 2, 456 (2006)CrossRefGoogle Scholar
  11. 11.
    T. Vockerodt et al., Appl. Phys. B 106, 529–532 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    Mangirdas, Malinauskas et al., Light Sci. Appl. 5, e16133 (2016)CrossRefGoogle Scholar
  13. 13.
    C. Malcolm, Gower, in Proc. SPIE 3343, High-Power Laser Ablation (1998)Google Scholar
  14. 14.
    K. Varju et al., J. Mod. Opt. 52, 379–394 (2005)ADSCrossRefGoogle Scholar
  15. 15.
    P. Balcou et al., Appl. Phys. B 74, 509–515 (2002)ADSCrossRefGoogle Scholar
  16. 16.
    Y. Akiyama et al., Phys. Rev. Lett. 69, 2176 (1992)ADSCrossRefGoogle Scholar
  17. 17.
    M. Lopez-Arias et al., J. Appl. Phys. 111, 043111 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    R.A. Ganeev et al., J. Opt. Soc. B 29, 3286 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    R.A. Ganeev et al., J. Opt. Soc. B 24, 2770 (2007)ADSCrossRefGoogle Scholar
  20. 20.
    R.A. Ganeev, Plasma Harmonics (Pan Stanford Publishing, Singapore, 2014)CrossRefGoogle Scholar
  21. 21.
    M. Suzuki et al., J. Opt. Soc. B 24, 2847 (2007)ADSCrossRefGoogle Scholar
  22. 22.
    P.A. Franken et al., Phys. Rev. Lett. 7, 118 (1961)ADSCrossRefGoogle Scholar
  23. 23.
    G.H.C. New, J.F. Ward, Phys. Rev. Lett. 19, 556 (1967)ADSCrossRefGoogle Scholar
  24. 24.
    T. Brabec, F. Krausz, Rev. Mod. Phys. 72, 545 (2000)ADSCrossRefGoogle Scholar
  25. 25.
    P.D. Maker, R.W. Terhune, Phys. Rev. 137, A801 (1965)ADSCrossRefGoogle Scholar
  26. 26.
    R. Rakowski et al., Rev. Sci. Instrum. 85, 123105 (2014)ADSCrossRefGoogle Scholar
  27. 27.
    S. Suntsov et al., Opt. Express 17, 3190 (2009)ADSCrossRefGoogle Scholar
  28. 28.
    F. Theberge et al., Appl. Phys. Lett. 87, 081108 (2005)ADSCrossRefGoogle Scholar
  29. 29.
    Z. Zhang et al., Opt. Lett. 35, 974 (2010)ADSCrossRefGoogle Scholar
  30. 30.
    A. Willner et al., Phys. Rev. Lett. 107, 175002 (2011)ADSCrossRefGoogle Scholar
  31. 31.
    R.A. Ganeev et al., Phys. Rev. A 82, 043812 (2010)ADSCrossRefGoogle Scholar
  32. 32.
    R.P. Singh et al., Phys. Plasmas 22, 123302 (2015)ADSCrossRefGoogle Scholar
  33. 33.
    M.L. Naudeau et al., Opt. Express 14, 6194 (2006)ADSCrossRefGoogle Scholar
  34. 34.
    R.A. Ganeev et al., Appl. Phys. Lett. 104, 021122 (2014)ADSCrossRefGoogle Scholar
  35. 35.
    R.A. Ganeev, M. Suzuki, H. Kuroda, Eur. Phys. J. D 68, 332 (2014)ADSCrossRefGoogle Scholar
  36. 36.
    P.H. Krupenie, J. Phys. Chem. Ref. Data 1, 423 (1972)ADSCrossRefGoogle Scholar
  37. 37.
    A. Lofthus, P.H. Krupenie, J. Phys. Chem. Ref. Data 6, 113 (1977)ADSCrossRefGoogle Scholar
  38. 38.
    J.F. Reintjes, Nonlinear Optical Parametric Processes in Liquids and Gases (Academic Press, Orlando, 1984)Google Scholar
  39. 39.
    J. Rothhardt et al., New J. Phys. 16, 033022 (2014)ADSCrossRefGoogle Scholar
  40. 40.
    T. Popmintchev et al., PNAS 106, 10516–10521 (2009)ADSCrossRefGoogle Scholar
  41. 41.
    L. Arissian et al., Opt. Express 20, 8337 (2012)ADSCrossRefGoogle Scholar
  42. 42.
    D.V. Apeksimov et al., Atmos. Ocean. Opt. 26, 539–544 (2013)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsUniversity “POLITEHNICA” of BucharestBucharestRomania

Personalised recommendations