Skip to main content
Log in

Third harmonic from air breakdown plasma induced by nanosecond laser pulses

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Harmonic generation is a nonlinear optical effect consisting in frequency up-conversion of intense laser radiation when phase-matching conditions are fulfilled. Here, we study the mechanisms involved in the third harmonic (TH) generation process, the conversion efficiency, and the properties of TH radiation generated in air by focusing infrared linearly polarized nanosecond laser pulses at intensities of the order of TW/cm2. By analyzing the emission from the air breakdown plasma, we demonstrate that filamentary breakdown plasma containing molecular nitrogen ions acts as an optical nonlinear medium enabling generation of TH radiation in the axial direction. The data reveal important properties of the TH radiation: maximum conversion efficiency of 0.04%, sinc2 dependence of the TH intensity on the square root of the pump intensity, and three times smaller divergence and pulse duration of TH as compared to the pump radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. R.W. Boyd, Nonlinear Optics (Academic Press, New York, 2008)

    Google Scholar 

  2. Y.R. Shen, The Principles of Non-linear Optics (Wiley, Hoboken, 2003)

    Google Scholar 

  3. D. Kartashov et al., Opt. Lett. 37, 2268–2270 (2012)

    Article  ADS  Google Scholar 

  4. C. Rodriguez et al., Opt. Express 19, 16115 (2011)

    Article  ADS  Google Scholar 

  5. F. Krausz, Rev. Mod. Phys. 81, 163 (2009)

    Article  ADS  Google Scholar 

  6. P.B. Corkum, F. Krausz, Nat. Phys. 3, 381 (2007)

    Article  Google Scholar 

  7. D. Linde, Appl. Phys. B 68, 315–319 (1999)

    Article  ADS  Google Scholar 

  8. I.B. Foldes et al., Laser Part. Beams 21, 517–521 (2003)

    Article  ADS  Google Scholar 

  9. P. Heissler et al., Appl. Phys. B 101, 511–521 (2010)

    Article  ADS  Google Scholar 

  10. B. Dromey et al., Nat Phys. 2, 456 (2006)

    Article  Google Scholar 

  11. T. Vockerodt et al., Appl. Phys. B 106, 529–532 (2012)

    Article  ADS  Google Scholar 

  12. Mangirdas, Malinauskas et al., Light Sci. Appl. 5, e16133 (2016)

    Article  Google Scholar 

  13. C. Malcolm, Gower, in Proc. SPIE 3343, High-Power Laser Ablation (1998)

  14. K. Varju et al., J. Mod. Opt. 52, 379–394 (2005)

    Article  ADS  Google Scholar 

  15. P. Balcou et al., Appl. Phys. B 74, 509–515 (2002)

    Article  ADS  Google Scholar 

  16. Y. Akiyama et al., Phys. Rev. Lett. 69, 2176 (1992)

    Article  ADS  Google Scholar 

  17. M. Lopez-Arias et al., J. Appl. Phys. 111, 043111 (2012)

    Article  ADS  Google Scholar 

  18. R.A. Ganeev et al., J. Opt. Soc. B 29, 3286 (2012)

    Article  ADS  Google Scholar 

  19. R.A. Ganeev et al., J. Opt. Soc. B 24, 2770 (2007)

    Article  ADS  Google Scholar 

  20. R.A. Ganeev, Plasma Harmonics (Pan Stanford Publishing, Singapore, 2014)

    Book  Google Scholar 

  21. M. Suzuki et al., J. Opt. Soc. B 24, 2847 (2007)

    Article  ADS  Google Scholar 

  22. P.A. Franken et al., Phys. Rev. Lett. 7, 118 (1961)

    Article  ADS  Google Scholar 

  23. G.H.C. New, J.F. Ward, Phys. Rev. Lett. 19, 556 (1967)

    Article  ADS  Google Scholar 

  24. T. Brabec, F. Krausz, Rev. Mod. Phys. 72, 545 (2000)

    Article  ADS  Google Scholar 

  25. P.D. Maker, R.W. Terhune, Phys. Rev. 137, A801 (1965)

    Article  ADS  Google Scholar 

  26. R. Rakowski et al., Rev. Sci. Instrum. 85, 123105 (2014)

    Article  ADS  Google Scholar 

  27. S. Suntsov et al., Opt. Express 17, 3190 (2009)

    Article  ADS  Google Scholar 

  28. F. Theberge et al., Appl. Phys. Lett. 87, 081108 (2005)

    Article  ADS  Google Scholar 

  29. Z. Zhang et al., Opt. Lett. 35, 974 (2010)

    Article  ADS  Google Scholar 

  30. A. Willner et al., Phys. Rev. Lett. 107, 175002 (2011)

    Article  ADS  Google Scholar 

  31. R.A. Ganeev et al., Phys. Rev. A 82, 043812 (2010)

    Article  ADS  Google Scholar 

  32. R.P. Singh et al., Phys. Plasmas 22, 123302 (2015)

    Article  ADS  Google Scholar 

  33. M.L. Naudeau et al., Opt. Express 14, 6194 (2006)

    Article  ADS  Google Scholar 

  34. R.A. Ganeev et al., Appl. Phys. Lett. 104, 021122 (2014)

    Article  ADS  Google Scholar 

  35. R.A. Ganeev, M. Suzuki, H. Kuroda, Eur. Phys. J. D 68, 332 (2014)

    Article  ADS  Google Scholar 

  36. P.H. Krupenie, J. Phys. Chem. Ref. Data 1, 423 (1972)

    Article  ADS  Google Scholar 

  37. A. Lofthus, P.H. Krupenie, J. Phys. Chem. Ref. Data 6, 113 (1977)

    Article  ADS  Google Scholar 

  38. J.F. Reintjes, Nonlinear Optical Parametric Processes in Liquids and Gases (Academic Press, Orlando, 1984)

    Google Scholar 

  39. J. Rothhardt et al., New J. Phys. 16, 033022 (2014)

    Article  ADS  Google Scholar 

  40. T. Popmintchev et al., PNAS 106, 10516–10521 (2009)

    Article  ADS  Google Scholar 

  41. L. Arissian et al., Opt. Express 20, 8337 (2012)

    Article  ADS  Google Scholar 

  42. D.V. Apeksimov et al., Atmos. Ocean. Opt. 26, 539–544 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Romanian Government through the CAPACITIES/RO-CERN project, Grant ELI-NP, E/04 HHGDE (contract number 04/27.06.2014), and through CNDI-UEFISCDI project, Grant PN-II-PT-PCCA-2011-3.1-0886 UFOUV (contract number 1/2012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Stafe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stafe, M., Negutu, C. & Puscas, N.N. Third harmonic from air breakdown plasma induced by nanosecond laser pulses. Appl. Phys. B 124, 106 (2018). https://doi.org/10.1007/s00340-018-6978-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-018-6978-x

Navigation