Skip to main content
Log in

Multi-species trace gas sensing with dual-wavelength QCLs

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Instrumentation for environmental monitoring of gaseous pollutants and greenhouse gases tends to be complex, expensive, and energy demanding, because every compound measured relies on a specific analytical technique. This work demonstrates an alternative approach based on mid-infrared laser absorption spectroscopy with dual-wavelength quantum cascade lasers (QCLs). The combination of two dual- and one single-DFB QCL yields high-precision measurements of CO (0.08 ppb), CO2 (100 ppb), NH3 (0.02 ppb), NO (0.4 ppb), NO2 (0.1 ppb), N2O (0.045 ppb), and O3 (0.11 ppb) simultaneously in a compact setup (45 × 45 cm2). The lasers are driven time-multiplexed in intermittent continuous wave mode with a repetition rate of 1 kHz. The individual spectra are real-time averaged (1 s) by an FPGA-based data acquisition system. The instrument was assessed for environmental monitoring and benchmarked with reference instrumentation to demonstrate its potential for compact multi-species trace gas sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. EU, in Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on ambient air quality and cleaner air for Europe (Official Journal of the European Union, 2008). http://data.europa.eu/eli/dir/2008/50/oj

  2. WMO/GAW WMO Global Atmosphere Watch (GAW), Implementation plan: 2016–2023, WMO (2016), http://www.wmo.int/pages/prog/arep/gaw/gaw-reports.html. Accessed 16 May 2018

  3. M. Steinbacher, C. Zellweger, B. Schwarzenbach, S. Bugmann, B. Buchmann, C. Ordóñez, A.S.H. Prevot, C. Hueglin, Nitrogen oxide measurements at rural sites in Switzerland: bias of conventional measurement techniques. J. Geophys. Res. Atmos. 112, D11307 (2007)

    Article  ADS  Google Scholar 

  4. E.J. Dunlea, S.C. Herndon, D.D. Nelson, R.M. Volkamer, F. San Martini, P.M. Sheehy, M.S. Zahniser, J.H. Shorter, J.C. Wormhoudt, B.K. Lamb, E.J. Allwine, J.S. Gaffney, N.A. Marley, M. Grutter, C. Marquez, S. Blanco, B. Cardenas, A. Retama, C.R. Ramos Villegas, C.E. Kolb, L.T. Molina, M.J. Molina, Evaluation of nitrogen dioxide chemiluminescence monitors in a polluted urban environment. Atmos. Chem. Phys. 7, 2691–2704 (2007)

    Article  ADS  Google Scholar 

  5. J.B. McManus, M.S. Zahniser, D.D. Nelson, J.H. Shorter, S.C. Herndon, D. Jervis, M. Agnese, R. McGovern, T.I. Yacovitch, J.R. Roscioli, Recent progress in laser-based trace gas instruments: performance and noise analysis. Appl. Phys. B Lasers Opt. 119, 203–218 (2015)

    Article  ADS  Google Scholar 

  6. J.B. McManus, M.S. Zahniser, D.D. Nelson Jr., J.H. Shorter, S. Herndon, E. Wood, R. Wehr, Application of quantum cascade lasers to high-precision atmospheric trace gas measurements. Opt. Eng. 49, 111124 (2010)

    Article  ADS  Google Scholar 

  7. B. Tuzson, K. Zeyer, M. Steinbacher, J.B. McManus, D.D. Nelson, M.S. Zahniser, L. Emmenegger, Selective measurements of NO, NO2 and NO y in the free troposphere using quantum cascade laser spectroscopy. Atmos. Meas. Tech. 6, 927–936 (2013)

    Article  Google Scholar 

  8. R.E. Baren, M.E. Parrish, K.H. Shafer, C.N. Harward, S. Quan, D.D. Nelson, J.B. McManus, M.S. Zahniser, Quad quantum cascade laser spectrometer with dual gas cells for the simultaneous analysis of mainstream and sidestream cigarette smoke. Spectrochim Acta Part A Mol Biomol. Spectrosc. 60, 3437–3447 (2004)

    Article  ADS  Google Scholar 

  9. M. Huebner, S. Welzel, D. Marinov, O. Guaitella, S. Glitsch, A. Rousseau, J. Roepcke, TRIPLE Q: A three channel quantum cascade laser absorption spectrometer for fast multiple species concentration measurements. Rev. Sci. Instrum. 82, 092102 (2011)

    Google Scholar 

  10. C.L. Schiller, H. Bozem, C. Gurk, U. Parchatka, R. Königstedt, G.W. Harris, J. Lelieveld, H. Fischer, Applications of quantum cascade lasers for sensitive trace gas measurements of CO, CH4, N2O and HCHO. Appl. Phys. B 92, 419–430 (2008)

    Article  ADS  Google Scholar 

  11. V. Catoire, C. Robert, M. Chartier, P. Jacquet, C. Guimbaud, G. Krysztofiak, The SPIRIT airborne instrument: a three-channel infrared absorption spectrometer with quantum cascade lasers for in situ atmospheric trace-gas measurements. Appl. Phys. B 123, 244 (2017)

    Article  ADS  Google Scholar 

  12. M. Razeghi, W.J. Zhou, S. Slivken, Q.Y. Lu, D.H. Wu, R. McClintock, Recent progress of quantum cascade laser research from 3 to 12 mum at the Center for Quantum Devices Invited. Appl. Opt. 56, H30-H44 (2017)

    Article  Google Scholar 

  13. P. Rauter, F. Capasso, Multi-wavelength quantum cascade laser arrays. Laser Photonics Rev. 9, 452–477 (2015)

    Article  Google Scholar 

  14. M. Süess, R. Peretti, Y. Liang, J. Wolf, C. Bonzon, B. Hinkov, S. Nida, P. Jouy, W. Metaferia, S. Lourdudoss, M. Beck, J. Faist, Advanced fabrication of single-mode and multi-wavelength MIR-QCLs. Photonics 3, 26 (2016)

    Article  Google Scholar 

  15. A. Straub, C. Gmachl, D.L. Sivco, A.M. Sergent, F. Capasso, A.Y. Cho, Simultaneously at two wavelengths (5.0 and 7.5 mum) singlemode and tunable quantum cascade distributed feedback lasers. Electron. Lett. 38, 565–567 (2002)

    Article  Google Scholar 

  16. J. Jagerska, P. Jouy, A. Hugi, B. Tuzson, H. Looser, M. Mangold, M. Beck, L. Emmenegger, J. Faist, Dual-wavelength quantum cascade laser for trace gas spectroscopy. Appl. Phys. Lett. 105, 161109 (2014)

    Article  ADS  Google Scholar 

  17. J. Jagerska, P. Jouy, B. Tuzson, H. Looser, M. Mangold, P. Soltic, A. Hugi, R. Broennimann, J. Faist, L. Emmenegger, Simultaneous measurement of NO and NO2 by dual-wavelength quantum cascade laser spectroscopy. Opt. Express 23, 1512–1522 (2015)

    Article  ADS  Google Scholar 

  18. M. Süess, P.M. Hundt, B. Tuzson, S. Riedi, J. Wolf, R. Peretti, M. Beck, H. Looser, L. Emmenegger, J. Faist, Dual-section DFB-QCLs for multi-species trace gas analysis, Photonics 3, 24 (2016)

    Article  Google Scholar 

  19. F. Kapsalidis, M. Shahmohammadi, M. Süess, J.M. Wolf, E. Gini, M. Beck, M. Hundt, B. Tuzson, L. Emmenegger, J. Faist, Dual-wavelength DFB quantum cascade lasers: sources for multi-species trace gas spectroscopy. Appl. Phys. B Lasers Opt. (2018). https://doi.org/10.1007/s00340-018-6973-2 (this issue)

    Google Scholar 

  20. L.S. Rothman, I.E. Gordon, Y. Babikov, A. Barbe, D.C. Benner, P.F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L.R. Brown, A. Campargue, K. Chance, E.A. Cohen, L.H. Coudert, V.M. Devi, B.J. Drouin, A. Fayt, J.M. Flaud, R.R. Gamache, J.J. Harrison, J.M. Hartmann, C. Hill, J.T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R.J. Le Roy, G. Li, D.A. Long, O.M. Lyulin, C.J. Mackie, S.T. Massie, S. Mikhailenko, H.S.P. Mueller, O.V. Naumenko, A.V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E.R. Polovtseva, C. Richard, M.A.H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G.C. Toon, V.G. Tyuterev, G. Wagner, The HITRAN2012 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013)

    Article  ADS  Google Scholar 

  21. J.B. McManus, D.D. Nelson, S.C. Herndon, J.H. Shorter, M.S. Zahniser, S. Blaser, L. Hvozdara, A. Muller, M. Giovannini, J. Faist, Comparison of cw and pulsed operation with a TE-cooled quantum cascade infrared laser for detection of nitric oxide at 1900 cm−1. Appl. Phys. B 85, 235–241 (2006)

    Article  ADS  Google Scholar 

  22. C. Liu, B. Tuzson, P. Scheidegger, H. Looser, B. Bereiter, M. Graf, M. Hundt, O. Aseev, D. Maas, L. Emmenegger, Laser driving and data processing concept for mobile trace gas sensing: design and implementation. Rev. Sci. Instrum. (2018, to appear)

  23. L. Tombez, J. Di Francesco, S. Schilt, G. Di Domenico, J. Faist, P. Thomann, D. Hofstetter, Frequency noise of free-running 4.6 um distributed feedback quantum cascade lasers near room temperature. Opt. Lett. 36, 3109–3111 (2011)

    Article  ADS  Google Scholar 

  24. M. Fischer, B. Tuzson, A. Hugi, R. Broennimann, A. Kunz, S. Blaser, M. Rochat, O. Landry, A. Mueller, L. Emmenegger, Intermittent operation of QC-lasers for mid-IR spectroscopy with low heat dissipation: tuning characteristics and driving electronics. Opt. Express 22, 7014–7027 (2014)

    Article  ADS  Google Scholar 

  25. NABEL, Technischer Bericht zum Nationalen Beobachtungsnetz für Luftfremdstoffe (NABEL), (2017). https://www.bafu.admin.ch/bafu/de/home/themen/luft/zustand/daten/nationales-beobachtungsnetz-fuer-luftfremdstoffe--nabel-.html. Accessed 16 May 2018

  26. P. Werle, R. Mucke, F. Slemr, The limits of signal averaging in atmospheric trace-gas monitoring by tuneable diode-laser absorption-spectroscopy (TDLAS). Appl. Phys. B Photophys. Laser Chem. 57, 131–139 (1993)

    Article  ADS  Google Scholar 

  27. WMO/GAW, 18th WMO/IAEA Meeting on Carbon Dioxide, Other greenhouse gases and related tracers measurement techniques (GGMT-2015), WMO (2015), https://library.wmo.int/opac/doc_num.php?explnum_id=3074. Accessed 16 May 2018

Download references

Acknowledgements

This work was financially supported by nano-tera.ch/IrSens II and the Swiss Federal Office for the Environment (FOEN) through “Umwelttechnologieförderung”. We thank the NABEL team for providing the data from the monitoring station in Dübendorf and for supplying the reference gases. The continuous support of Beat Schwarzenbach (Empa) with O3 calibrations and NO x measurements was indispensable for this work. Christoph Zellweger (Empa) is acknowledged for providing the calibrated reference gas cylinder.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Morten Hundt.

Additional information

This article is part of the topical collection “Mid-infrared and THz Laser Sources and Applications” guest edited by Wei Ren, Paolo De Natale and Gerard Wysocki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hundt, P.M., Tuzson, B., Aseev, O. et al. Multi-species trace gas sensing with dual-wavelength QCLs. Appl. Phys. B 124, 108 (2018). https://doi.org/10.1007/s00340-018-6977-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-018-6977-y

Navigation