Advertisement

Applied Physics B

, 124:105 | Cite as

Towards realization of quantitative atmospheric and industrial gas sensing using THz wave electronics

  • Aniket Tekawade
  • Timothy E. Rice
  • Matthew A. Oehlschlaeger
  • Muhammad Waleed Mansha
  • Kefei Wu
  • Mona M. Hella
  • Ingrid Wilke
Article
  • 262 Downloads
Part of the following topical collections:
  1. Mid-infrared and THz Laser Sources and Applications

Abstract

The potential of THz wave electronics for miniaturized non-intrusive sensors for atmospheric, environmental, and industrial gases is explored. A THz wave spectrometer is developed using a radio-frequency multiplier source and a Schottky-diode detector. Spectral absorption measurements were made in a gas cell within a frequency range of 220–330 GHz at room temperature and subatmospheric pressures. Measurements are reported for pure acetonitrile (CH3CN), methanol (CH3OH), and ethanol (C2H5OH) vapors at 5 and 10 Torr and for methanol dilute in the air (0.75–3.0 mol%) at a pressure of 500 Torr. An absorbance noise floor of 10−3 was achieved for a single 10 s scan of the 220–330 GHz frequency domain. Measured absorption spectra for methanol/air agree well at collisional-broadened conditions with spectral simulations carried out using literature spectroscopic parameters. In contrast to the previous submillimeter wave research that has focused on spectral absorbance at extremely low pressures (mTorr), where transitions are in the Doppler limit, and the present study illustrates the applicability of THz electronics for gas sensing at pressures approaching those found in atmospheric and industrial environments.

References

  1. 1.
    A. Sieghard, D.T. Petkie, R.P.A. Bettens, S.P. Belov, F.C. De Lucia, Anal. Chem. 70, 719A (1998)Google Scholar
  2. 2.
    F.C. De Lucia, D.T. Petkie, in Terahertz for Military and Security Applications III, ed. by R. J. Hwu, D. L. Woolard, M. J. Rosker (SPIE, ‎Bellingham, 2005), p. 44CrossRefGoogle Scholar
  3. 3.
    R. Han, E. Afshari, IEEE J. Solid State Circuits 48, 3090 (2013)CrossRefGoogle Scholar
  4. 4.
    E. Seok, D. Shim, C. Mao, R. Han, S. Sankaran, C. Cao, W. Knap, K.K. O, IEEE J. Solid State Circuits 45, 1554 (2010)CrossRefGoogle Scholar
  5. 5.
    R. Han, Y. Zhang, D. Coquillat, H. Videlier, W. Knap, E. Brown, K.K. O, IEEE J. Solid State Circuits 46, 2602 (2011)CrossRefGoogle Scholar
  6. 6.
    K. Wu, S. Muralidharan, M.M. Hella, IEEE Trans. Electron Devices 65, 788 (2018)ADSCrossRefGoogle Scholar
  7. 7.
    C. Wang, R. Han, IEEE J. Solid State Circuits 52, 3361 (2017)CrossRefGoogle Scholar
  8. 8.
    K. Schmalz, J. Borngraber, W. Debski, M. Elkhouly, R. Wang, P.F.-X. Neumaier, D. Kissinger, H.-W. Hubers, IEEE Trans. Terahertz Sci. Technol. 6, 318 (2016)ADSCrossRefGoogle Scholar
  9. 9.
    K. Wu, S. Muralidharan, M.M. Hella, IEEE Trans. Microw. Theory Tech. 66, 187 (2018)ADSCrossRefGoogle Scholar
  10. 10.
    H.J. Hansen, Proc. IEEE 95, 1691 (2007)CrossRefGoogle Scholar
  11. 11.
    R.M. Smith, M.A. Arnold, Anal. Chem. 87, 10679 (2015)CrossRefGoogle Scholar
  12. 12.
    M.B. Agranat, I.V. Il’ina, D.S. Sitnikov, High Temp. 55, 922 (2017)CrossRefGoogle Scholar
  13. 13.
    H.M. Pickett, R.L. Poynter, E.A. Cohen, M.L. Delitsky, J.C. Pearson, H.S.P. Müller, J. Quant. Spectrosc. Radiat. Trans. 60, 883 (1998)ADSCrossRefGoogle Scholar
  14. 14.
    I.E. Gordon, L.S. Rothman, C. Hill, R.V. Kochanov, Y. Tan, P.F. Bernath, M. Birk, V. Boudon, A. Campargue, K.V. Chance, B.J. Drouin, J.M. Flaud, R.R. Gamache, J.T. Hodges, D. Jacquemart, V.I. Perevalov, A. Perrin, K.P. Shine, M.A.H. Smith, J. Tennyson, G.C. Toon, H. Tran, V.G. Tyuterev, A. Barbe, A.G. Császár, V.M. Devi, T. Furtenbacher, J.J. Harrison, J.M. Hartmann, A. Jolly, T.J. Johnson, T. Karman, I. Kleiner, A.A. Kyuberis, J. Loos, O.M. Lyulin, S.T. Massie, S.N. Mikhailenko, N. Moazzen-Ahmadi, H.S.P. Müller, O.V. Naumenko, A.V. Nikitin, O.L. Polyansky, M. Rey, M. Rotger, S.W. Sharpe, K. Sung, E. Starikova, S.A. Tashkun, J.V. Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu and E.J. Zak, J. Quant. Spectrosc. Radiat. Trans. 203, 3 (2017)ADSCrossRefGoogle Scholar
  15. 15.
    C.F. Neese, I.R. Medvedev, G.M. Plummer, A.J. Frank, C.D. Ball, F.C. De Lucia, IEEE Sens. J. 12, 2565 (2012)CrossRefGoogle Scholar
  16. 16.
    I.R. Medvedev, R. Schueler, J. Thomas, O. Kenneth, H.-J. Nam, N. Sharma, Q. Zhong, D.J. Lary, P. Raskin, in, 2016 41st International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz) (IEEE, 2016), pp. 1–2Google Scholar
  17. 17.
    Y.-D. Hsieh, S. Nakamura, D.G. Abdelsalam, T. Minamikawa, Y. Mizutani, H. Yamamoto, T. Iwata, F. Hindle, T. Yasui, Sci. Rep. 6, 28114 (2016)ADSCrossRefGoogle Scholar
  18. 18.
    P. Kilcullen, I.D. Hartley, E.T. Jensen, M. Reid, J. Infrared Millim. Terahertz Waves 36, 380 (2015)CrossRefGoogle Scholar
  19. 19.
    J.S. Melinger, Y. Yang, M. Mandehgar, D. Grischkowsky, Opt. Express 20, 6788 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    J.F. Johansson, N.D. Whyborn, IEEE Trans. Microw. Theory Tech. 40, 795 (1992)ADSCrossRefGoogle Scholar
  21. 21.
    L. Liu, J.L. Hesler, H. Xu, A.W. Lichtenberger, R.M. Weikle, IEEE Microw. Wireless Compon. Lett. 20, 504 (2010)CrossRefGoogle Scholar
  22. 22.
    J.L. Hesler, L. Liu, H. Xu, Y. Duan, R.M. Weikle, in, 2008 33rd International Conference on Infrared, Millimeter and Terahertz Waves (IEEE, 2008), pp. 1–2Google Scholar
  23. 23.
    M. Naftaly, R.E. Miles, P.J. Greenslade, in 2007 Joint 32nd International Conference on Infrared and Millimeter Waves and the 15th International Conference on Terahertz Electronics, (IEEE, 2007), pp. 819–820Google Scholar
  24. 24.
    R. Piesiewicz, C. Jansen, S. Wietzke, D. Mittleman, M. Koch, T. Kürner, Int. J. Infrared Millim. Waves 28, 363 (2007)ADSCrossRefGoogle Scholar
  25. 25.
    D.F. Swinehart, J. Chem. Educ. 39, 333 (1962)CrossRefGoogle Scholar
  26. 26.
    A.M. Fosnight, B.L. Moran, I.R. Medvedev, Appl. Phys. Lett. 103, 133703 (2013)ADSCrossRefGoogle Scholar
  27. 27.
    C.S. Goldenstein, V.A. Miller, R. Mitchell, C.L. Spearrin, Strand, J. Quant. Spectrosc. Radiat. Trans. 200, 249 (2017)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Aniket Tekawade
    • 1
  • Timothy E. Rice
    • 1
  • Matthew A. Oehlschlaeger
    • 1
  • Muhammad Waleed Mansha
    • 2
  • Kefei Wu
    • 2
  • Mona M. Hella
    • 2
  • Ingrid Wilke
    • 3
  1. 1.Department of Mechanical, Aerospace, and Nuclear EngineeringRensselaer PolytechnicTroyUSA
  2. 2.Department of Electrical, Computer, and Systems EngineeringRensselaer PolytechnicTroyUSA
  3. 3.Department of PhysicsRensselaer PolytechnicTroyUSA

Personalised recommendations