Skip to main content
Log in

Towards realization of quantitative atmospheric and industrial gas sensing using THz wave electronics

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The potential of THz wave electronics for miniaturized non-intrusive sensors for atmospheric, environmental, and industrial gases is explored. A THz wave spectrometer is developed using a radio-frequency multiplier source and a Schottky-diode detector. Spectral absorption measurements were made in a gas cell within a frequency range of 220–330 GHz at room temperature and subatmospheric pressures. Measurements are reported for pure acetonitrile (CH3CN), methanol (CH3OH), and ethanol (C2H5OH) vapors at 5 and 10 Torr and for methanol dilute in the air (0.75–3.0 mol%) at a pressure of 500 Torr. An absorbance noise floor of 10−3 was achieved for a single 10 s scan of the 220–330 GHz frequency domain. Measured absorption spectra for methanol/air agree well at collisional-broadened conditions with spectral simulations carried out using literature spectroscopic parameters. In contrast to the previous submillimeter wave research that has focused on spectral absorbance at extremely low pressures (mTorr), where transitions are in the Doppler limit, and the present study illustrates the applicability of THz electronics for gas sensing at pressures approaching those found in atmospheric and industrial environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A. Sieghard, D.T. Petkie, R.P.A. Bettens, S.P. Belov, F.C. De Lucia, Anal. Chem. 70, 719A (1998)

    Google Scholar 

  2. F.C. De Lucia, D.T. Petkie, in Terahertz for Military and Security Applications III, ed. by R. J. Hwu, D. L. Woolard, M. J. Rosker (SPIE, ‎Bellingham, 2005), p. 44

    Chapter  Google Scholar 

  3. R. Han, E. Afshari, IEEE J. Solid State Circuits 48, 3090 (2013)

    Article  Google Scholar 

  4. E. Seok, D. Shim, C. Mao, R. Han, S. Sankaran, C. Cao, W. Knap, K.K. O, IEEE J. Solid State Circuits 45, 1554 (2010)

    Article  Google Scholar 

  5. R. Han, Y. Zhang, D. Coquillat, H. Videlier, W. Knap, E. Brown, K.K. O, IEEE J. Solid State Circuits 46, 2602 (2011)

    Article  Google Scholar 

  6. K. Wu, S. Muralidharan, M.M. Hella, IEEE Trans. Electron Devices 65, 788 (2018)

    Article  ADS  Google Scholar 

  7. C. Wang, R. Han, IEEE J. Solid State Circuits 52, 3361 (2017)

    Article  Google Scholar 

  8. K. Schmalz, J. Borngraber, W. Debski, M. Elkhouly, R. Wang, P.F.-X. Neumaier, D. Kissinger, H.-W. Hubers, IEEE Trans. Terahertz Sci. Technol. 6, 318 (2016)

    Article  ADS  Google Scholar 

  9. K. Wu, S. Muralidharan, M.M. Hella, IEEE Trans. Microw. Theory Tech. 66, 187 (2018)

    Article  ADS  Google Scholar 

  10. H.J. Hansen, Proc. IEEE 95, 1691 (2007)

    Article  Google Scholar 

  11. R.M. Smith, M.A. Arnold, Anal. Chem. 87, 10679 (2015)

    Article  Google Scholar 

  12. M.B. Agranat, I.V. Il’ina, D.S. Sitnikov, High Temp. 55, 922 (2017)

    Article  Google Scholar 

  13. H.M. Pickett, R.L. Poynter, E.A. Cohen, M.L. Delitsky, J.C. Pearson, H.S.P. Müller, J. Quant. Spectrosc. Radiat. Trans. 60, 883 (1998)

    Article  ADS  Google Scholar 

  14. I.E. Gordon, L.S. Rothman, C. Hill, R.V. Kochanov, Y. Tan, P.F. Bernath, M. Birk, V. Boudon, A. Campargue, K.V. Chance, B.J. Drouin, J.M. Flaud, R.R. Gamache, J.T. Hodges, D. Jacquemart, V.I. Perevalov, A. Perrin, K.P. Shine, M.A.H. Smith, J. Tennyson, G.C. Toon, H. Tran, V.G. Tyuterev, A. Barbe, A.G. Császár, V.M. Devi, T. Furtenbacher, J.J. Harrison, J.M. Hartmann, A. Jolly, T.J. Johnson, T. Karman, I. Kleiner, A.A. Kyuberis, J. Loos, O.M. Lyulin, S.T. Massie, S.N. Mikhailenko, N. Moazzen-Ahmadi, H.S.P. Müller, O.V. Naumenko, A.V. Nikitin, O.L. Polyansky, M. Rey, M. Rotger, S.W. Sharpe, K. Sung, E. Starikova, S.A. Tashkun, J.V. Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu and E.J. Zak, J. Quant. Spectrosc. Radiat. Trans. 203, 3 (2017)

    Article  ADS  Google Scholar 

  15. C.F. Neese, I.R. Medvedev, G.M. Plummer, A.J. Frank, C.D. Ball, F.C. De Lucia, IEEE Sens. J. 12, 2565 (2012)

    Article  Google Scholar 

  16. I.R. Medvedev, R. Schueler, J. Thomas, O. Kenneth, H.-J. Nam, N. Sharma, Q. Zhong, D.J. Lary, P. Raskin, in, 2016 41st International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz) (IEEE, 2016), pp. 1–2

  17. Y.-D. Hsieh, S. Nakamura, D.G. Abdelsalam, T. Minamikawa, Y. Mizutani, H. Yamamoto, T. Iwata, F. Hindle, T. Yasui, Sci. Rep. 6, 28114 (2016)

    Article  ADS  Google Scholar 

  18. P. Kilcullen, I.D. Hartley, E.T. Jensen, M. Reid, J. Infrared Millim. Terahertz Waves 36, 380 (2015)

    Article  Google Scholar 

  19. J.S. Melinger, Y. Yang, M. Mandehgar, D. Grischkowsky, Opt. Express 20, 6788 (2012)

    Article  ADS  Google Scholar 

  20. J.F. Johansson, N.D. Whyborn, IEEE Trans. Microw. Theory Tech. 40, 795 (1992)

    Article  ADS  Google Scholar 

  21. L. Liu, J.L. Hesler, H. Xu, A.W. Lichtenberger, R.M. Weikle, IEEE Microw. Wireless Compon. Lett. 20, 504 (2010)

    Article  Google Scholar 

  22. J.L. Hesler, L. Liu, H. Xu, Y. Duan, R.M. Weikle, in, 2008 33rd International Conference on Infrared, Millimeter and Terahertz Waves (IEEE, 2008), pp. 1–2

  23. M. Naftaly, R.E. Miles, P.J. Greenslade, in 2007 Joint 32nd International Conference on Infrared and Millimeter Waves and the 15th International Conference on Terahertz Electronics, (IEEE, 2007), pp. 819–820

  24. R. Piesiewicz, C. Jansen, S. Wietzke, D. Mittleman, M. Koch, T. Kürner, Int. J. Infrared Millim. Waves 28, 363 (2007)

    Article  ADS  Google Scholar 

  25. D.F. Swinehart, J. Chem. Educ. 39, 333 (1962)

    Article  Google Scholar 

  26. A.M. Fosnight, B.L. Moran, I.R. Medvedev, Appl. Phys. Lett. 103, 133703 (2013)

    Article  ADS  Google Scholar 

  27. C.S. Goldenstein, V.A. Miller, R. Mitchell, C.L. Spearrin, Strand, J. Quant. Spectrosc. Radiat. Trans. 200, 249 (2017)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew A. Oehlschlaeger.

Additional information

This article is part of the topical collection “Mid-infrared and THz Laser Sources and Applications” guest edited by Wei Ren, Paolo De Natale and Gerard Wysocki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tekawade, A., Rice, T.E., Oehlschlaeger, M.A. et al. Towards realization of quantitative atmospheric and industrial gas sensing using THz wave electronics. Appl. Phys. B 124, 105 (2018). https://doi.org/10.1007/s00340-018-6974-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-018-6974-1

Navigation