Skip to main content
Log in

Wavelength modulation spectroscopy near 5 \(\upmu\)m for carbon monoxide sensing in a high-pressure kerosene-fueled liquid rocket combustor

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

A laser absorption sensor was developed for carbon monoxide (CO) sensing in high-pressure, fuel-rich combustion gases associated with the internal conditions of hydrocarbon-fueled liquid bipropellant rockets. An absorption feature near 4.98 \(\upmu\)m, comprised primarily of two rovibrational lines from the P-branch of the fundamental band, was selected to minimize temperature sensitivity and spectral interference with other combustion gas species at the extreme temperatures (> 3000 K) and pressures (> 50 atm) in the combustion chamber environment. A scanned wavelength modulation spectroscopy technique (1f-normalized 2f detection) is utilized to infer species concentration from CO absorption, and mitigate the influence of non-absorption transmission losses and noise associated with the harsh sooting combustor environment. To implement the sensing strategy, a continuous-wave distributed-feedback (DFB) quantum cascade laser (QCL) was coupled to a hollow-core optical fiber for remote mid-infrared light delivery to the test article, with high-bandwidth light detection by a direct-mounted photovoltaic detector. The method was demonstrated to measure time-resolved CO mole fraction over a range of oxidizer-to-fuel ratios and pressures (20–70 atm) in a single-element-injector RP-2-GOx rocket combustor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. P.G. Hill, C.R. Peterson, Mechanics and thermodynamics of propulsion. 2nd edn. (Addison-Wesley Publishing Co, Reading, 1992)

  2. A.W. Caswell, S.T. Sanders, M.J. Chiaverini, 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit (2005)

  3. A.S. Makowiecki, T.R. Hayden, M.R. Nakles, N.H. Pilgram, N.A. MacDonald, W.A. Hargus, G.B. Rieker, 53rd AIAA/SAE/ASEE Joint Propulsion Conference (2017)

  4. J. Locke, S. Pal, R. Woodward, R. Santoro, 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition (2011)

  5. H. Zeng, F. Li, X. Yu, D. Ou, L. Chen, Appl. Opt. 57, 1321 (2018)

    Article  Google Scholar 

  6. A.W. Caswell, K. Rein, S.T. Sanders, T. Kraetschmer, S. Roy, D.T. Shouse, James R. Gord, Appl. Opt. 49, 4963 (2010)

  7. C.S. Goldenstein, R.M. Spearrin, J.B. Jeffries, R.K. Hanson, Proc. Combust. Inst. 35, 3739–3747 (2015)

  8. R.M. Spearrin, C.S. Goldenstein, J.B. Jeffries, R.K. Hanson. Appl. Opt. 117, 689–698 (2014)

    Google Scholar 

  9. E.B. Coy, 53rd AIAA Aerospace Sciences Meeting (2015)

  10. R.K. Hanson, R.M. Spearrin, C.S. Goldenstein, Spectroscopy and Optical Diagnostics for Gases (Springer, New York, 2016)

  11. C.S. Goldenstein, R.M. Spearrin, J.B. Jeffries, R.K. Hanson, Progr. Energy Combust. Sci. 60, 132–176 (2017)

  12. M.G. Allen, Measurement Sci. Technol. 9, 545–562 (1998)

  13. K. Sun, R. Sur, X. Chao, J.B. Jeffries, R.K. Hanson, R.J. Pummill, K.J. Whitty, Proc. Combust. Inst. 34, 3593–3601 (2013)

    Article  Google Scholar 

  14. G.B. Rieker, J.B. Jeffries, R.K. Hanson, Appl. Opt. 48, 5546 (2009)

    Article  ADS  Google Scholar 

  15. L.S. Rothman, I.E. Gordon, R.J. Barber, H. Dothe, R.R. Gamache, A. Goldman, V.I. Perevalov, S.A. Tashkun, J. Tennyson, J. Quant. Spectrosc. Radiat. Transfer 111, 2139–2150 (2010)

    Article  ADS  Google Scholar 

  16. R.M. Spearrin, W. Ren, J.B. Jeffries, R.K. Hanson, Appl. Phys. B: Lasers Opt. 116, 855–865 (2014)

    Article  ADS  Google Scholar 

  17. C.S. Goldenstein, V.A. Miller, R.M. Spearrin, C.L. Strand, J. Quant. Spectrosc. Radiat. Transfer 200, 249–257 (2017)

  18. J.M. Hartmann, L. Rosenmann, M.Y. Perrin, J. Taine, Appl. Opt. 27, 3063 (1988)

    Article  ADS  Google Scholar 

  19. H. Li, G.B. Rieker, X. Liu, J.B. Jeffries, R.K. Hanson, Appl. Opt. 45, 1052 (2006)

    Article  ADS  Google Scholar 

  20. K. Sun, X. Chao, R. Sur, C.S. Goldenstein, J.B. Jeffries, R.K. Hanson, Measurement Sci. Technol. 24 (2013)

  21. J.M. Kriesel, N. Gat, B.E. Bernacki, R.L. Erikson, B.D. Cannon, T.L. Myers, C.M. Bledt, J.A. Harrington, In Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XII, International Society for Optics and Photonics, Orlando, 4 June 2011

Download references

Acknowledgements

This work was sponsored by the Air Force Research Laboratory in Edwards, CA under Award No. 16-EPA-RQ-09. The authors thank Dr. Ed Coy and Dr. Steve Danczyk of AFRL for their support in conducting field measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel D. Lee.

Additional information

This article is part of the topical collection “Mid-infrared and THz Laser Sources and Applications” guest edited by Wei Ren, Paolo De Natale and Gerard Wysocki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, D.D., Bendana, F.A., Schumaker, S.A. et al. Wavelength modulation spectroscopy near 5 \(\upmu\)m for carbon monoxide sensing in a high-pressure kerosene-fueled liquid rocket combustor. Appl. Phys. B 124, 77 (2018). https://doi.org/10.1007/s00340-018-6945-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-018-6945-6

Navigation