Skip to main content
Log in

An anatomy of strong-field ionization-induced air lasing

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

It is known that in an intense laser field of a sufficiently high strength combined with a sufficiently long wavelength, i.e., in the regime of the Keldysh parameter γ < 1, photoionization of atoms and molecules can be realized through a quantum tunnel process. The tunnel ionization preferentially occurs from the orbital with the lowest ionization energy, thus the majority of the generated ions will stay on the ground state. It is surprising that tunnel ionization of nitrogen molecules with mid- and near-infrared intense laser fields can initiate strong laser-like emissions, indicating generation of stimulated emissions in molecular nitrogen ions. The physical mechanism behind the observation is still under debate. Here, we review the major progresses we made in the past a few years. The focus is placed on investigations on the lasing action at 391 nm wavelength initiated by either mid-infrared strong laser fields in the wavelength range from 1.2 to 2 µm or near-infrared intense laser fields around 800 nm wavelength. We reveal that the mechanisms of lasing actions are different for the pump lasers in the above two spectral regions. We also show that the coherent wavepackets of molecular nitrogen ions generated in the intense laser fields uniquely allow for efficient nonlinear interaction with light at resonance frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. L.V. Keldysh, Sov. Phys. JETP 20, 1307 (1965)

    Google Scholar 

  2. B. Sheehy, J.D.D. Martin, L.F. DiMauro, P. Agostini, K.J. Schafer, M.B. Gaarde, K.C. Kulander, Phys. Rev. Lett. 83, 5270 (1999)

    Article  ADS  Google Scholar 

  3. T. Popmintchev, M.C. Chen, P. Arpin, M.M. Murnane, H.C. Kapteyn, Nat. Photon. 4, 822 (2010)

    Article  ADS  Google Scholar 

  4. H. Xiong et al., Opt. Lett. 34, 1747 (2009)

    Article  ADS  Google Scholar 

  5. C.I. Blaga, F. Catoire, P. Colosimo, G.G. Paulus, H.G. Muller, P. Agostini, L.F. DiMauro, Nat. Phys. 5, 335 (2009)

    Article  Google Scholar 

  6. W. Quan et al., Phys. Rev. Lett. 103, 093001 (2009)

    Article  ADS  Google Scholar 

  7. Y.L. Wang et al., Phys. Rev. A 95, 063415 (2017)

    Article  ADS  Google Scholar 

  8. B. Wolter, M.G. Pullen, M. Baudisch, M. Sclafani, M. Hemmer, A. Senftleben, C.D. Schröter, J. Ullrich, R. Moshammer, J. Biegert, Phys. Rev. X 5, 021034 (2015)

    Google Scholar 

  9. T. Popmintchev et al., Science 336, 1287 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  10. C. Matteo et al., Phys. Rev. Lett. 110, 253901 (2013)

    Article  Google Scholar 

  11. J. Yao, B. Zeng, H. Xu, G. Li, W. Chu, J. Ni, H. Zhang, S.L. Chin, Y. Cheng, Z. Xu, Phys. Rev. A 84, 051802(R) (2011)

    Article  ADS  Google Scholar 

  12. J. Yao et al., New J. Phys. 15, 023046 (2013)

    Article  ADS  Google Scholar 

  13. Y. Liu, P. Ding, G. Lambert, A. Houard, V. Tikhonchuk, A. Mysyrowicz, Phys. Rev. Lett. 115, 133203 (2015)

    Article  ADS  Google Scholar 

  14. Y. Liu et al., Phys. Rev. Lett. 119, 203205 (2017)

    Article  ADS  Google Scholar 

  15. J. Yao et al., Phys. Rev. Lett. 116, 143007 (2016)

    Article  ADS  Google Scholar 

  16. H. Xu, E. Lötstedt, A. Iwasaki, K. Yamanouchi, Nat. Commun. 6, 8347 (2015)

    Article  ADS  Google Scholar 

  17. H. Xu, E. Lötstedt, T. Ando, A. Iwasaki, K. Yamanouchi, Phys. Rev. A 96, 041401(R) (2017)

    Article  ADS  Google Scholar 

  18. A. Azarm, P. Corkum, P. Polynkin, Phys. Rev. A 96, 051401(R) (2017)

    Article  ADS  Google Scholar 

  19. D. Kartashov et al., Research in Optical Sciences, OSA Technical Digest (Optical Society of America, 2014), paper HTh4B.5

  20. V.A. Vaulin, V.N. Slinko, S.S. Sulakshin, Sov. J. Quantum Electron. 18, 1457 (1988)

    Article  ADS  Google Scholar 

  21. Q. Luo, W. Liu, S.L. Chin, Appl. Phys. B 76, 337 (2003)

    Article  ADS  Google Scholar 

  22. A. Dogariu, J.B. Michael, M.O. Scully, R.B. Miles, Science 331, 442 (2011)

    Article  ADS  Google Scholar 

  23. A.J. Traverso, R. Sanchez-Gonzalez, L. Yuan, K. Wang, D.V. Voronine, A.M. Zheltikov, Y. Rostovtsev, V.A. Sautenkov, A.V. Sokolov, S.W. North, M.O. Scully, Proc. Natl. Acad. Sci. 109, 15185 (2012)

    Article  ADS  Google Scholar 

  24. D. Kartashov, S. Ališauskas, G. Andriukaitis, A. Pugžlys, M. Shneider, A. Zheltikov, S.L. Chin, A. Baltuška, Phys. Rev. A 86, 033831 (2012)

    Article  ADS  Google Scholar 

  25. D. Kartashov, S. Ališauskas, A. Baltuška, A. Schmitt-Sody, W. Roach, P. Polynkin, Phys. Rev. A 88, 041805(R) (2013)

    Article  ADS  Google Scholar 

  26. S. Mitryukovskiy, Y. Liu, P. Ding, A. Houard, A. Mysyrowicz, Opt. Express 22, 12750 (2014)

    Article  ADS  Google Scholar 

  27. J. Yao et al., Opt. Express 22, 19005 (2014)

    Article  ADS  Google Scholar 

  28. S. Mitryukovskiy, Y. Liu, P. Ding, A. Houard, A. Couairon, A. Mysyrowicz, Phys. Rev. Lett. 114, 063003 (2015)

    Article  ADS  Google Scholar 

  29. P. Ding, S. Mitryukovskiy, A. Houard, E. Oliva, A. Couairon, A. Mysyrowicz, Y. Liu, Opt. Express 22, 29964 (2014)

    Article  ADS  Google Scholar 

  30. H. Xie, G. Li, W. Chu, B. Zeng, J. Yao, C. Jing, Z. Li, Y. Cheng, New J. Phys. 17, 073009 (2015)

    Article  ADS  Google Scholar 

  31. P. Ding, E. Oliva, A. Houard, A. Mysyrowicz, Y. Liu, Phys. Rev. A 94, 043824 (2016)

    Article  ADS  Google Scholar 

  32. Z. Li, W. Chu, B. Zeng, J. Yao, G. Li, H. Xie, Z. Wang, Y. Cheng, J. Phys. B: At. Mol. Opt. Phys. 49, 065602 (2016)

    Article  ADS  Google Scholar 

  33. A. Dogariu, R.B. Miles, Conference on lasers and electro-optics, OSA technical digest (Optical Society of America, 2013), paper QW1E.1

  34. A. Laurain, M. Scheller, P. Polynkin, Phys. Rev. Lett. 113, 253901 (2014)

    Article  ADS  Google Scholar 

  35. H. Zhang et al., Phys. Rev. X 3, 041009 (2013)

    Google Scholar 

  36. D. Kartashov, J. Möhring, G. Andriukaitis, A. Pugžlys, A. Zheltikov, M. Motzkus, A. Baltuška, Conference on lasers and electro-optics, OSA technical digest (Optical Society of America, 2012), paper QTh4E.6

  37. W. Chu et al., Laser Phys. Lett. 11, 015301 (2013)

    Article  ADS  Google Scholar 

  38. Y. Liu, Y. Brelet, G. Point, A. Houard, A. Mysyrowicz, Opt. Express 21, 22791 (2013)

    Article  ADS  Google Scholar 

  39. T. Wang, J. Ju, J. Daigle, S. Yuan, R. Li, S.L. Chin, Laser Phys. Lett. 10, 125401 (2013)

    Article  ADS  Google Scholar 

  40. J. Ni et al., Opt. Express 21, 8746 (2013)

    Article  ADS  Google Scholar 

  41. T. Wang, J.F. Daigle, J. Ju, S. Yuan, R. Li, S.L. Chin, Phys. Rev. A 88, 053429 (2013)

    Article  ADS  Google Scholar 

  42. G. Andriukaitis, J. Möhring, D. Kartashov, A. Pugžlys, A. Zheltikov, M. Motzkus, A. Baltuška, EPJ Web of Conferences 41, 10004 (2013). https://doi.org/10.1051/epjconf/20134110004

  43. H. Zhang, C. Jing, G. Li, H. Xie, J. Yao, B. Zeng, W. Chu, J. Ni, H. Xu, Y. Cheng, Phys. Rev. A 88, 063417 (2013)

    Article  ADS  Google Scholar 

  44. B. Zeng, W. Chu, G. Li, J. Yao, H. Zhang, J. Ni, C. Jing, H. Xie, Y. Cheng, Phys. Rev. A 89, 042508 (2014)

    Article  ADS  Google Scholar 

  45. H. Xie et al., Phys. Rev. A 90, 042504 (2014)

    Article  ADS  Google Scholar 

  46. G. Point, Y. Liu, Y. Brelet, S. Mitryukovskiy, P. Ding, A. Houard, A. Mysyrowicz, Opt. Lett. 39, 1725 (2014)

    Article  ADS  Google Scholar 

  47. P. Wang, C. Wu, M. Lei, B. Dai, H. Yang, H. Jiang, Q. Gong, Phys. Rev. A 92, 063412 (2015)

    Article  ADS  Google Scholar 

  48. G. Li et al., Phys. Rev. A 89, 033833 (2014)

    Article  ADS  Google Scholar 

  49. J. Ni et al., Opt. Lett. 39, 2250 (2014)

    Article  ADS  Google Scholar 

  50. Z. Li, B. Zeng, W. Chu, H. Xie, J. Yao, G. Li, L. Qiao, Z. Wang, Y. Cheng, Sci. Rep. 6, 21504 (2016)

    Article  ADS  Google Scholar 

  51. L. Arissian, B. Kamer, A. Rasoulof, Opt. Commun. 369, 215 (2016)

    Article  ADS  Google Scholar 

  52. C. Jing et al., Laser Phys. Lett. 12, 015301 (2015)

    Article  ADS  Google Scholar 

  53. C. Jing et al., Opt. Express 22, 3151 (2014)

    Article  ADS  Google Scholar 

  54. M. Lei, C. Wu, A. Zhang, Q. Gong, H. Jiang, Opt. Express 25, 4535 (2017)

    Article  ADS  Google Scholar 

  55. C. Jing, J. Yao, Z. Li, J. Ni, B. Zeng, W. Chu, G. Li, H. Xie, Y. Cheng, J. Phys. B: At. Mol. Opt. Phys. 48, 094001 (2015)

    Article  ADS  Google Scholar 

  56. X. Zhong, Z. Miao, L. Zhang, Q. Liang, M. Lei, H. Jiang, Y. Liu, Q. Gong, C. Wu, Phys. Rev. A 96, 043422 (2017)

    Article  ADS  Google Scholar 

  57. H. Li, H. Zang, Y. Su, Y. Fu, H. Xu, J. Opt. 19, 124006 (2017)

    Article  ADS  Google Scholar 

  58. D. Kartashov et al., Conference on lasers and electro-optics, OSA technical digest (Optical Society of America, 2015), paper SM2N.3

  59. S.L. Chin, H. Xu, J. Phys. B: At. Mol. Opt. Phys. 49, 222003 (2016)

    Article  ADS  Google Scholar 

  60. A. Lofthus, P.H. Krupenie, J. Phys. Chem. Ref. Data 6, 113 (1977)

    Article  ADS  Google Scholar 

  61. J. Yao, W. Chu, Z. Liu, B. Xu, J. Chen, Y. Cheng, New J. Phys. 20, 033035 (2018)

    Article  ADS  Google Scholar 

  62. V. Loriot, E. Hertz, O. Faucher, B. Lavorel, Opt. Express 18, 3011 (2010)

    Article  ADS  Google Scholar 

  63. Z. Liu, J. Yao, J. Chen, B. Xu, W. Chu, Y. Cheng, Phys. Rev. Lett. 120, 083205 (2018)

    Article  ADS  Google Scholar 

  64. H. Yanagi, A. Yoshiki, S. Hotta, S. Kobayashi, Appl. Phys. Lett. 83, 1941 (2003)

    Article  ADS  Google Scholar 

  65. A. Becker, A.D. Bandrauk, S.L. Chin, Chem. Phys. Lett. 343, 345 (2001)

    Article  ADS  Google Scholar 

  66. J. Jolly, A. Plain, Chem. Phys. Lett. 100, 425 (1983)

    Article  ADS  Google Scholar 

  67. P.L. Baldeck, R.R. Alfano, G.P. Agrawal, Appl. Phys. Lett. 52, 1939 (1988)

    Article  ADS  Google Scholar 

  68. P.P. Bey, J.F. Giuliani, H. Rabin, Phys. Lett. A 26, 128 (1968)

    Article  ADS  Google Scholar 

  69. R.R. Laher, F.R. Gilmore, J. Phys. Chem. Ref. Data 20, 685 (1991)

    Article  ADS  Google Scholar 

  70. J. Yao, W. Chu, C. Tian, Z. Li, Z. Wang, Y. Cheng, arXiv:1608.05183 (2016)

  71. B. Xu et al., Free-space N2 + lasers generated in strong laser fields: the role of molecular vibration (2018) (in preparation)

Download references

Acknowledgements

This work is supported by the National Basic Research Program of China (Grant No. 2014CB921303), National Natural Science Foundation of China (Grant Nos. 11734009, 61575211, 11674340, and 61327902), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB16000000), Key Research Program of Frontier Sciences, Chinese Academy of Sciences (Grant No. QYZDJ-SSW-SLH010), Project of Shanghai Committee of Science and Technology (Grant No. 17JC1400400) and Shanghai Rising-Star Program (Grant No. 17QA1404600).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya Cheng.

Additional information

This article is part of the topical collection “Mid-infrared and THz Laser Sources and Applications” guest edited by Wei Ren, Paolo De Natale and Gerard Wysocki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, J., Chu, W., Liu, Z. et al. An anatomy of strong-field ionization-induced air lasing. Appl. Phys. B 124, 73 (2018). https://doi.org/10.1007/s00340-018-6940-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-018-6940-y

Navigation