Skip to main content
Log in

Terahertz multiband ultrahigh index metamaterials by bilayer metallic grating structure

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

One-dimensional metallic grating structure was proposed to realize high refractive index metamaterial in the terahertz region. By drastically increasing the effective permittivity by means of intense capacitive coupling and reducing the diamagnetic effect using a thin metallic thickness, a peak refractive index of 15.81 at the resonant frequency in embedded metallic grating can be obtained. Multiband high refractive index metamaterial can be realized by double symmetric metallic grating and asymmetric grating structure. For asymmetric grating metamaterial structure, two separate transmission peaks appear and result in two separate high refractive index. Interestingly, a near zero refractive index metamaterial can be obtained by the introduction of double asymmetric design. It was found that our designed ultrahigh refractive index metamaterials depend on the electric field coupling effect and the magnetic field diamagnetic response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Y. Liang, W. Peng, M. Lu, Chu, S, Narrow-band wavelength tunable filter based on asymmetric bilayer metallic grating. Opt. Express 23(11), 14434 (2015)

    Article  ADS  Google Scholar 

  2. M. Choi., S.H. Lee, Y. Kim, S.B. Kang, J. Shin., M.H Kwak, A terahertz metamaterial with unnaturally high refractive index”. Nature 470(7334), 369 (2011)

    Article  ADS  Google Scholar 

  3. X. Wei., H. Shi., X. Dong., Y. Lu., C. Du, A high refractive index metamaterial at visible frequencies formed by stacked cut-wire plasmonic structures. Appl. Phys. Lett. 97(1), 011904-011904-3 (2010)

    Article  ADS  Google Scholar 

  4. D.V.P. Xiao. Shumin, A.V. Kildishev, X. Ni., U.K. Chettiar, H.K. Yuan, Loss-free and active optical negative-index metamaterials. Nature, 466(7307):735 (2010)

    Article  ADS  Google Scholar 

  5. R. Singh, W. Singh, W. Zhang, Ultra-high terahertz index in deep subwavelength coupled bi-layer free-standing flexible metamaterials. J. Appl. Phys. 121.23:2075–329 (2017)

    Google Scholar 

  6. Z. Shi, R.W. Boyd, R.M. Camacho, P.K. Vudyasetu, J.C. Howell, Slow-light fourier transform interferometer. Phys. Rev. Lett., 99(24):240801 (2007)

    Article  ADS  Google Scholar 

  7. K. Ishihara, T. Suzuki, Metamaterial demonstrates both a high refractive index and extremely low reflection in the 0.3-THz Band. J. Infrared Millimeter Terahertz Waves, 1–10 (2017)

  8. R. Liu., C. Ji., J.J. Mock., J. Chin, T.J. Cui, D.R. Smith, Broadband ground-plane cloak. Science 323(5912), 366–369 (2009)

    Article  ADS  Google Scholar 

  9. M. Zhong, Influence of dielectric layer on negative refractive index and transmission of metal-dielectric-metal sandwiched metamaterials. Chin. Optics Lett. 12(4), 51–53 (2014)

    ADS  MathSciNet  Google Scholar 

  10. F.J. Garciavidal, L. Martinmoreno, J.B. Pendry, Surfaces with holes in them: new plasmonic metamaterials. J. Optics A Pure Appl. Optics 7(2), S97 (2005)

    Article  Google Scholar 

  11. A.P. Hibbins, B.R. Evans, J.R. Sambles, Experimental verification of designer surface plasmons. Science 308(5722), 670 (2005)

    Article  ADS  Google Scholar 

  12. J.B. Pendry., D. Schurig, D.R. Smith, J.B. Pendry, D. Schurig, Smith, D. R, Controlling electromagnetic fields. Science 312, 1780–1782, Science, 312(5781), p. 1780–1782. (2006)

    Google Scholar 

  13. J. Shin, J.T. Shen, S. Fan, Three-dimensional meta-materials with an ultra-high effective refractive index over broad bandwidth. Phys. Rev. Lett. 102(9), 093903 (2009)

    Article  ADS  Google Scholar 

  14. D. Sun, M. Wang, Y. Huang, Y. Zhou, M. Qi, M. Jiang, Z. Ren, Enhanced spatial terahertz modulation based on graphene metamaterial”. Chin. Optics Lett. 15(5), 051603 (2017)

    Article  ADS  Google Scholar 

  15. W. Wang, F. Yan, S. Tan, H. Zhou, Y. Hou, Ultrasensitive terahertz metamaterial sensor based on vertical split ring resonators”. Photonics Res. 5(6), 571–577 (2017)

    Article  Google Scholar 

  16. W. Zhu, M. Jiang, H. Guan, J. Yu, H. Lu, J. Zhang, Z. Chen, Tunable spin splitting of Laguerre–Gaussian beams in graphene metamaterials. Photonics Res. 5(6), 684–688 (2017)

    Article  Google Scholar 

  17. S.C.A. Sonsilphong, N. Wongkasem, “Meta-materials with near-zero refractive index produced using fishnet structures. J. Opt. 16.1, 100–103 (2013)

    Google Scholar 

  18. S.D. Mock. J.J. Justice, S.A Cummer, J.B. Pendry, A.F. Starr, Metamaterial electromagnetic cloak at microwave frequencies. Science 314(5801), 977–80 (2006)

    Article  ADS  Google Scholar 

  19. K. Konstantinidis, A.P. Feresidis, Broadband near-zero index metamaterials. J. Optic, 17.10:105104 (2015)

    Article  Google Scholar 

  20. M. Dubois., C. Shi., X. Zhu., Y. Wang., X. Zhang, Observation of acoustic dirac-like cone and double zero refractive index. Nat. Commun., 8:14871 (2017)

    Article  ADS  Google Scholar 

  21. R. Vukoman, ČolovićB. Jokanović, Miloš Nenadovič, Anka Trajkovska Petkovska, Mitrić. M, & B. Jokanović, Ultra-high and near-zero refractive indices of magnetron sputtered thin-film metamaterials based on TixOy. Adv. Mater. Sci. Eng., 7–8 (2016)

  22. Z. Lu, B. Campsraga, N.E. Islam, Design and Analysis of a THz metamaterial structure with high refractive index at two frequencies. Physics Research International, pp. 2090–2220 (2012)

  23. G. Litmanovitch, D. Rrotshild, A. Abramovich, Flat mirror for millimeter-wave and terahertz imaging systems using an inexpensive metasurface. Chin Optics Lett 15(1), 011101 (2017)

    Article  ADS  Google Scholar 

  24. L. Bibbò, K. Khan, Q. Liu, M. Lin, Q. Wang, Z. Ouyang, Tunable narrowband antireflection optical filter with a metasurface. Photonics Res 5(5), 500–506 (2017)

    Article  Google Scholar 

  25. Z. Bai, G. Tao, Y. Li, J. He, K. Wang, G. Wang, X. Jiang, J. Wang, W. Blau, L. Zhang, Fabrication and near-infrared optical responses of 2D periodical Au/ITO nanocomposite arrays. Photonics Res 5(4), 280–286 (2017)

    Article  Google Scholar 

  26. D.R. Smith, S. Schultz, P. Marko, C.M. Soukoulis, Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients. Phys. Rev B., 65(19), 195104 (2001)

    Article  ADS  Google Scholar 

  27. X. Jing, W. Wang, R. Xia, J. Zhao, Y. Tian, Z. Hong, Manipulation of dual band ultrahigh index metamaterials in the terahertz region”. Appl. Opt., 55(31), 8743 (2016)

    Article  ADS  Google Scholar 

  28. X. Jing, X.C. Gui, R. Xia., Z. Hong, Ultrabroadband unnaturally high effective refractive index metamaterials in the terahertz regio. IEEE Photonics J. PP(99), 1–1 (2017)

    Article  Google Scholar 

  29. A. Darweesh. Ahmad, S.J. Bauman, J.B. Herzog, Improved optical enhancement using double-width plasmonic gratings with nanogaps. Photonics Res., 4.5:173 (2016)

    Article  Google Scholar 

  30. X.R. Shi., Y. Guo., R. Chen., T. Hao. L, & Chen, X, Periodic structural defects in Bragg gratings and their application in multiwavelength devices. Photonics Res., 4.2:35 (2016)

    Google Scholar 

  31. K. Konstantinidis, A.P. Feresidis, Broadband near-zero index metamaterials. J. Opt. 17(10), 105104 (2015)

    Article  Google Scholar 

  32. S. Islam., M. Faruque, M. Islam, A near zero refractive index metamaterial for electromagnetic invisibility cloaking operation. Materials 8(8), 4790–4804 (2015)

    Article  ADS  Google Scholar 

  33. H. Zhou, P. Zhibin, S. Qu, S. Zhang, J. Wang, Z. Duan, H. Ma, Z. Xu, A novel high-directivity microstrip patch antenna based on zero index metamaterial. IEEE Antennas Propag. Lett. 8, 538–541 (2009)

    Article  ADS  Google Scholar 

  34. M. Silveirinha, N. Engheta, Tunneling of electromagnetic energy through subwavelength channels and bends using ε-near-zero materials. Phys. Rev. Lett. 97, 157 403 (2006)

    Article  Google Scholar 

  35. R. Lui, Q. Cheng, T. Hand, J.J. Mock, T.J. Cui, S.A. Cummer, D.R. Smith, Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies. Phys. Rev. Lett. 100, 023903 (2008)

    Article  ADS  Google Scholar 

  36. B. Wang, K.-M. Huang, Shaping the radiation pattern with mu and epsilon—near-zero metamaterials. Progress Electromagn. Research 106, 107–119 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support from Natural Science Foundation of Zhejiang Province (LY17F050009, LQ15F050004), National Natural Science Foundation of China (NSFC) (No.61505192).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xufeng Jing.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gui, X., Jing, X., Zhou, P. et al. Terahertz multiband ultrahigh index metamaterials by bilayer metallic grating structure. Appl. Phys. B 124, 68 (2018). https://doi.org/10.1007/s00340-018-6939-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-018-6939-4

Navigation