Skip to main content
Log in

Ab-initio determination of porous silicon refractive index confirmed by infrared transmittance measurements of an omnidirectional multilayer reflector

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We report a multiscale design of omnidirectional Bragg mirrors based on dielectric multilayers by combining quantum mechanical and electromagnetic theories. This design begins with the calculation of electric permittivity for each layer using the density functional theory, followed by a transfer matrix study of light propagation along the multilayer reflector. The theoretical results were further validated by fabricating free-standing porous silicon multilayer films obtained through electrochemical etching of p+-type [100]-oriented crystalline Si wafers, alternating two anodic current densities. The measured infrared transmittance spectra confirm the position and width of the photonic bandgap predicted by the multiscale design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M. Anderson (ed.), The Book of the Mirror. An Interdisciplinary Collection Exploring the Cultural Story of the Mirror (Cambridge Scholars Publishing, Newcastle upon Tyne, 2007)

    Google Scholar 

  2. Y. Fink, J.N. Winn, S. Fan, C. Chen, J. Michel, J.D. Joannopoulos, E.L. Thomas, A dielectric omnidirectional reflector. Science 282, 1679 (1998)

    Article  ADS  Google Scholar 

  3. J. Lekner, Light in periodically stratified media. J. Opt. Soc. Am. A 11, 2892 (1994)

    Article  ADS  Google Scholar 

  4. R. Szipocs, K. Ferencz, C. Spielmann, F. Krausz, Chirped multilayer coatings for broadband dispersion control in femtosecond lasers. Opt. Lett. 19, 201 (1994)

    Article  ADS  Google Scholar 

  5. E. Xifré-Pérez, L.F. Marsal, J. Pallarès, J. Ferré-Borrull, Porous silicon mirrors with enlarged omnidirectional band gap. J. Appl. Phys. 97, 064503 (2005)

    Article  ADS  Google Scholar 

  6. M. Ibanescu, S.G. Johnson, M. Soljacic, J.D. Joannopoulos, Y. Fink, O. Weisberg, T.D. Engeness, S.A. Jacobs, M. Skorobogatiy, Analysis of mode structure in hollow dielectric waveguide fibers. Phys. Rev. E 67, 046608 (2003)

    Article  ADS  Google Scholar 

  7. Y. Yao, K.-T. Lee, X. Sheng, N.A. Batara, N. Hong, J. He, L. Xu, M.M. Hussain, H.A. Atwater, N.S. Lewis, R.G. Nuzzo, J.A. Rogers, Porous nanomaterials for ultrabroadband omnidirectional anti-reflection surfaces with applications in high concentration photovoltaics. Adv. Energy Mater. 7, 1601992 (2017)

    Article  Google Scholar 

  8. L. Canham (ed.), Handbook of Porous Silicon (Springer, Zug, 2014)

    Google Scholar 

  9. J.E. Lugo, H.A. Lopez, S. Chan, P.M. Fauchet, Porous silicon multilayer structures. A photonic band gap analysis. J. Appl. Phys. 91, 4966 (2002)

    Article  ADS  Google Scholar 

  10. E. Xifré-Pérez, L.F. Marsal, J. Ferré-Borrull, J. Pallarès, Porous silicon omnidirectional mirrors and distributed Bragg reflectors for planar waveguide applications. J. Appl. Phys. 102, 063111 (2007)

    Article  ADS  Google Scholar 

  11. D. Ariza-Flores, L.M. Gaggero-Sager, V. Agarwal, Study of the omnidirectional photonic bandgap for dielectric mirrors based on porous silicon: effect of optical and physical thickness. Nanoscale Res. Lett. 7, 391 (2012)

    Article  ADS  Google Scholar 

  12. D. Estrada-Wiese, J.A. del Río, R. Nava, J. Gómez-Ocampo, J. Tagüeña-Martínez, Z. Montiel-González, Staggered Padé wavelength distribution for multi-Bragg photonic mirrors. Solar Energy Mater. Solar Cells 141, 315 (2015)

    Article  Google Scholar 

  13. M.D. Segall, P.J.D. Lindan, M.J. Probert, C.J. Pickcard, P.J. Hasnip, S.J. Clark, M.C. Payne, First-principles simulation: ideas, illustrations and the CASTEP code. J. Phys. Condens. Matter. 14, 2717 (2002)

    Article  ADS  Google Scholar 

  14. Y. Bonder, C. Wang, A first-principles model of birefringent porous silicon. J. Appl. Phys. 100, 044319 (2006)

    Article  ADS  Google Scholar 

  15. T.C. Choy, Effective Medium Theory. Principles and Applications. (Oxford University Press, New York, 1999)

    Google Scholar 

  16. P. Yeh, Optical Waves in Layered Media (Wiley, New Jersey, 2005), p. 102

    Google Scholar 

  17. J.J. Saarinen, S.M. Weiss, P.M. Fauchet, J.E. Sipe, Reflectance analysis of a multilayer one-dimensional porous silicon structure: theory and experiment. J. Appl. Phys. 104, 013103 (2008)

    Article  ADS  Google Scholar 

  18. S. Chandrasekhar, Radiative Transfer (Dover Pub. Inc., New York, 1960), p. 30

    Google Scholar 

  19. R. Cisneros, C. Ramírez, C. Wang, Ellipsometry and ab initio approaches to the refractive index of porous silicon. J. Phys. Condens. Matter. 19, 395010 (2007)

    Article  Google Scholar 

  20. P. Alfaro, A. Palavicini, C. Wang, Hydrogen: oxygen and hydroxyl on porous silicon surface: a joint density-functional perturbation theory and infrared spectroscopy approach. Thin Solid Films 571, 206 (2014)

    Article  ADS  Google Scholar 

  21. Y.H. Ogata in Handbook of Porous Silicon, ed. by L. Canham (Springer, Zug, 2014), p. 473

    Google Scholar 

  22. B.C. Smith, Fundamentals of Fourier Transform Infrared Spectroscopy, 2nd edn. (CRC Press, Florida, 2011), p. 12

    Book  Google Scholar 

  23. E. Xifré-Pérez, L.F. Marsal, J. Ferré-Borrull, J. Pallarès, Low refractive index contrast porous silicon omnidirectional reflectors. Appl. Phys. B 95, 169 (2009)

    Article  ADS  Google Scholar 

  24. M. Song, P. Belov, P. Kapitanova, Wireless power transfer inspired by the modern trends in electromagnetics. Appl. Phys. Rev. 4, 021102 (2017)

    Article  ADS  Google Scholar 

  25. M.A. Kats, F. Capasso, Optical absorbers based on strong interference in ultra-thin films. Laser Photon. Rev. 10, 735 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Omar Novelo and Yolanda Flores for their technical assistance. This work has been partially supported by UNAM-IN106317 and CONACyT-252943. Computations were performed at Miztli of DGTIC, UNAM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chumin Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palavicini, A., Wang, C. Ab-initio determination of porous silicon refractive index confirmed by infrared transmittance measurements of an omnidirectional multilayer reflector. Appl. Phys. B 124, 65 (2018). https://doi.org/10.1007/s00340-018-6938-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-018-6938-5

Navigation