Applied Physics B

, 124:70 | Cite as

Temperature, pressure, and oxygen quenching behavior of fluorescence spectra and lifetimes of gas-phase o-xylene and 1,2,4-trimethylbenzene

  • Thorsten BenzlerEmail author
  • Torsten Endres
  • Thomas Dreier
  • Christof Schulz


Ortho-xylene (1,2-dimethylbenzene, XL) and 1,2,4-trimethylbenzene (TMB) are promising aromatic fluorescence tracer species for gas-phase imaging measurements of concentration, temperature, and oxygen partial pressure. In the present work, temperature-dependent gas-phase ultraviolet absorption spectra of XL and TMB were measured. In the investigated temperature range (296–725 K), the absorption bands red-shift with increasing temperature for both species and their absorption cross-sections increase. Time-resolved fluorescence spectra were recorded after picosecond laser excitation at 266 nm as a function of temperature (XL 296–1025 K, TMB 296–775 K), pressure (1–10 bar), and O2 concentration using a streak camera coupled to a spectrometer. The fluorescence spectra of both species show a noticeable red-shift with increasing temperature and O2 concentration. In N2 as bath gas, the fluorescence lifetime of XL and TMB decreases by three orders of magnitude at the peak temperatures compared to room temperature. For both species, fluorescence quenching by N2 (up to 10 bar) is temperature-dependent and is strongest at about 500 K. Quenching by O2 shortens the fluorescence lifetime for both species significantly. This effect is much reduced at higher temperatures. The temperature dependence of the Stern–Volmer coefficients that describe the effect of O2 quenching can be approximated by an exponential decay. Semi-empirical exponential fits to all investigated data (for XL and TMB) as well as published data for toluene were used to provide signal prediction models that are capable of predicting the signal intensities over a wide range of environmental conditions.



The authors acknowledge funding by the Deutsche Forschungsgemeinschaft (SCHU 1369/28) and the FVV (Forschungsvereinigung Verbrennungskraftmaschinen) Bioptic III project, FVV-Nr. 9000010.


  1. 1.
    C. Schulz, V. Sick, Prog. Energy Combust. Sci. 31, 75 (2005)CrossRefGoogle Scholar
  2. 2.
    B. Peterson, D.L. Reuss, V. Sick, Proc. Combust. Inst. 33, 3089 (2011)CrossRefGoogle Scholar
  3. 3.
    M. Loeffler, F. Beyrau, A. Leipertz, Appl. Opt. 49, 37 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    S. Lind, S. Aßmann, L. Zigan, S. Will, Appl. Opt. 55, 1551 (2016)ADSCrossRefGoogle Scholar
  5. 5.
    S. Faust, T. Dreier, C. Schulz, Appl. Phys. B 112, 203 (2013)ADSCrossRefGoogle Scholar
  6. 6.
    T. Benzler, T. Dreier, C. Schulz, Appl. Phys. B 123, 39 (2017)ADSCrossRefGoogle Scholar
  7. 7.
    S. Faust, M. Goschütz, S.A. Kaiser, T. Dreier, C. Schulz, Appl. Phys. B 117, 183 (2014)ADSCrossRefGoogle Scholar
  8. 8.
    L.M. Itani, G. Bruneaux, A.Di Lella, C. Schulz, Proc. Combust. Inst. 35, 2915 (2015)CrossRefGoogle Scholar
  9. 9.
    J. Trost, L. Zigan, A. Leipertz, D. Sahoo, P.C. Miles, Appl. Opt. 52, 8001 (2013)ADSCrossRefGoogle Scholar
  10. 10.
    C. Schulz, J. Gronki, S. Andersson, SAE technical paper series 2004-01-1917 (2004)Google Scholar
  11. 11.
    D. Frieden, V. Sick, J. Gronki, C. Schulz, Appl. Phys. B 75, 137 (2002)ADSCrossRefGoogle Scholar
  12. 12.
    A. Bolovinos, J. Philis, E. Pantos, P. Tsekeris, G. Andritsopoulos, J. Mol. Spectrosc. 94, 55 (1982)ADSCrossRefGoogle Scholar
  13. 13.
    T. Benzler, S. Faust, T. Dreier, C. Schulz, Appl. Phys. B 121, 549 (2015)ADSCrossRefGoogle Scholar
  14. 14.
    B. Rossow, Photophysical Processes of Organic Fluorescent Molecules and Kerosene—Application to Combustion Engines (Université Paris-Sud 11, Paris, 2011)Google Scholar
  15. 15.
    S. Faust, T. Dreier, C. Schulz, Chem. Phys. 383, 6 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    F. Ossler, T. Metz, M. Aldén, Appl. Phys. B 72, 465 (2001)ADSCrossRefGoogle Scholar
  17. 17.
    W. Koban, J.D. Koch, R.K. Hanson, C. Schulz, Phys. Chem. Chem. Phys. 6, 2940 (2004)CrossRefGoogle Scholar
  18. 18.
    J.R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer Science + Business Media, LLC, New York, 2006)CrossRefGoogle Scholar
  19. 19.
    S.A. Kaiser, M.B. Long, Proc. Combust. Inst. 30, 1555 (2005)CrossRefGoogle Scholar
  20. 20.
    W. Koban, J.D. Koch, R.K. Hanson, C. Schulz, Appl. Phys. B 80, 777 (2005)ADSCrossRefGoogle Scholar
  21. 21.
    S. Faust, G. Tea, T. Dreier, C. Schulz, Appl. Phys. B 110, 81 (2013)ADSCrossRefGoogle Scholar
  22. 22.
    W. Koban, J. Schorr, C. Schulz, Appl. Phys. B 74, 111 (2002)ADSCrossRefGoogle Scholar
  23. 23.
    R. Devillers, G. Bruneaux, C. Schulz, Appl. Phys. B 96, 735 (2009)ADSCrossRefGoogle Scholar
  24. 24.
    D. Fuhrmann, T. Benzler, T. Fernando, T. Endres, S.A. Kaiser, T. Dreier, C. Schulz: Proc. Combust. Inst. 36, 4505 (2017)CrossRefGoogle Scholar
  25. 25.
    S. Zabeti, A. Drakon, S. Faust, T. Dreier, O. Welz, M. Fikri, C. Schulz, Appl. Phys. B 118, 295 (2015)ADSCrossRefGoogle Scholar
  26. 26.
    T.B. Settersten, A. Dreizler, R.L. Farrow, J. Chem. Phys. 117, 3173 (2002)ADSCrossRefGoogle Scholar
  27. 27.
    T. Etzkorn, B. Klotz, S. Sörensen, I.V. Patroescu, I. Barnes, K.H. Becker, U. Platt, Atmos. Environ. 33, 525 (1999)ADSCrossRefGoogle Scholar
  28. 28.
    S. Fally, M. Carleer, A.C. Vandaele, J. Quant. Spectrosc. Radiat. Transf. 110, 766 (2009)ADSCrossRefGoogle Scholar
  29. 29.
    N. Nijegorodov, R. Mabbs, D.P. Winkoun, Acta A 59, 595 (2003)CrossRefGoogle Scholar
  30. 30.
    S. Faust, Characterisation of Organic Fuel Tracers for Laser-Based Quantitative Diagnostics of Fuel Concentration, Temperature, and Equivalence Ratio in Practical Combustion Processes (Universität Duisburg-Essen, Duisburg, 2013)Google Scholar
  31. 31.
    H. Wadi, E. Pollak, J. Chem. Phys. 110, 11890 (1999)ADSCrossRefGoogle Scholar
  32. 32.
    Y. He, E. Pollak, J. Chem. Phys. 116, 6088 (2002)ADSCrossRefGoogle Scholar
  33. 33.
    G.S. Beddard, G.R. Fleming, O.L.J. Gijzeman, G. Porter, Proc. R. Soc. Lond. A 340, 519, (1974)ADSCrossRefGoogle Scholar
  34. 34.
    M.C. Thurber, F. Grisch, B.J. Kirby, M. Votsmeier, R.K. Hanson, Appl. Opt. 37, 4963 (1998)ADSCrossRefGoogle Scholar
  35. 35.
    J.D. Koch, R.K. Hanson, Appl. Phys. B 76, 319 (2003)ADSCrossRefGoogle Scholar
  36. 36.
    M. Jacon, C. Lardeux, R. Lopez-Delgado, A. Tramer, Chem. Phys. Lett. 24, 145 (1977)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Thorsten Benzler
    • 1
    Email author
  • Torsten Endres
    • 1
  • Thomas Dreier
    • 1
  • Christof Schulz
    • 1
  1. 1.Institute for Combustion and Gas Dynamics, Reactive FluidsUniversity of Duisburg-EssenDuisburgGermany

Personalised recommendations