Skip to main content
Log in

Temperature, pressure, and oxygen quenching behavior of fluorescence spectra and lifetimes of gas-phase o-xylene and 1,2,4-trimethylbenzene

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Ortho-xylene (1,2-dimethylbenzene, XL) and 1,2,4-trimethylbenzene (TMB) are promising aromatic fluorescence tracer species for gas-phase imaging measurements of concentration, temperature, and oxygen partial pressure. In the present work, temperature-dependent gas-phase ultraviolet absorption spectra of XL and TMB were measured. In the investigated temperature range (296–725 K), the absorption bands red-shift with increasing temperature for both species and their absorption cross-sections increase. Time-resolved fluorescence spectra were recorded after picosecond laser excitation at 266 nm as a function of temperature (XL 296–1025 K, TMB 296–775 K), pressure (1–10 bar), and O2 concentration using a streak camera coupled to a spectrometer. The fluorescence spectra of both species show a noticeable red-shift with increasing temperature and O2 concentration. In N2 as bath gas, the fluorescence lifetime of XL and TMB decreases by three orders of magnitude at the peak temperatures compared to room temperature. For both species, fluorescence quenching by N2 (up to 10 bar) is temperature-dependent and is strongest at about 500 K. Quenching by O2 shortens the fluorescence lifetime for both species significantly. This effect is much reduced at higher temperatures. The temperature dependence of the Stern–Volmer coefficients that describe the effect of O2 quenching can be approximated by an exponential decay. Semi-empirical exponential fits to all investigated data (for XL and TMB) as well as published data for toluene were used to provide signal prediction models that are capable of predicting the signal intensities over a wide range of environmental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. C. Schulz, V. Sick, Prog. Energy Combust. Sci. 31, 75 (2005)

    Article  Google Scholar 

  2. B. Peterson, D.L. Reuss, V. Sick, Proc. Combust. Inst. 33, 3089 (2011)

    Article  Google Scholar 

  3. M. Loeffler, F. Beyrau, A. Leipertz, Appl. Opt. 49, 37 (2010)

    Article  ADS  Google Scholar 

  4. S. Lind, S. Aßmann, L. Zigan, S. Will, Appl. Opt. 55, 1551 (2016)

    Article  ADS  Google Scholar 

  5. S. Faust, T. Dreier, C. Schulz, Appl. Phys. B 112, 203 (2013)

    Article  ADS  Google Scholar 

  6. T. Benzler, T. Dreier, C. Schulz, Appl. Phys. B 123, 39 (2017)

    Article  ADS  Google Scholar 

  7. S. Faust, M. Goschütz, S.A. Kaiser, T. Dreier, C. Schulz, Appl. Phys. B 117, 183 (2014)

    Article  ADS  Google Scholar 

  8. L.M. Itani, G. Bruneaux, A.Di Lella, C. Schulz, Proc. Combust. Inst. 35, 2915 (2015)

    Article  Google Scholar 

  9. J. Trost, L. Zigan, A. Leipertz, D. Sahoo, P.C. Miles, Appl. Opt. 52, 8001 (2013)

    Article  ADS  Google Scholar 

  10. C. Schulz, J. Gronki, S. Andersson, SAE technical paper series 2004-01-1917 (2004)

  11. D. Frieden, V. Sick, J. Gronki, C. Schulz, Appl. Phys. B 75, 137 (2002)

    Article  ADS  Google Scholar 

  12. A. Bolovinos, J. Philis, E. Pantos, P. Tsekeris, G. Andritsopoulos, J. Mol. Spectrosc. 94, 55 (1982)

    Article  ADS  Google Scholar 

  13. T. Benzler, S. Faust, T. Dreier, C. Schulz, Appl. Phys. B 121, 549 (2015)

    Article  ADS  Google Scholar 

  14. B. Rossow, Photophysical Processes of Organic Fluorescent Molecules and Kerosene—Application to Combustion Engines (Université Paris-Sud 11, Paris, 2011)

    Google Scholar 

  15. S. Faust, T. Dreier, C. Schulz, Chem. Phys. 383, 6 (2011)

    Article  ADS  Google Scholar 

  16. F. Ossler, T. Metz, M. Aldén, Appl. Phys. B 72, 465 (2001)

    Article  ADS  Google Scholar 

  17. W. Koban, J.D. Koch, R.K. Hanson, C. Schulz, Phys. Chem. Chem. Phys. 6, 2940 (2004)

    Article  Google Scholar 

  18. J.R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer Science + Business Media, LLC, New York, 2006)

    Book  Google Scholar 

  19. S.A. Kaiser, M.B. Long, Proc. Combust. Inst. 30, 1555 (2005)

    Article  Google Scholar 

  20. W. Koban, J.D. Koch, R.K. Hanson, C. Schulz, Appl. Phys. B 80, 777 (2005)

    Article  ADS  Google Scholar 

  21. S. Faust, G. Tea, T. Dreier, C. Schulz, Appl. Phys. B 110, 81 (2013)

    Article  ADS  Google Scholar 

  22. W. Koban, J. Schorr, C. Schulz, Appl. Phys. B 74, 111 (2002)

    Article  ADS  Google Scholar 

  23. R. Devillers, G. Bruneaux, C. Schulz, Appl. Phys. B 96, 735 (2009)

    Article  ADS  Google Scholar 

  24. D. Fuhrmann, T. Benzler, T. Fernando, T. Endres, S.A. Kaiser, T. Dreier, C. Schulz: Proc. Combust. Inst. 36, 4505 (2017)

    Article  Google Scholar 

  25. S. Zabeti, A. Drakon, S. Faust, T. Dreier, O. Welz, M. Fikri, C. Schulz, Appl. Phys. B 118, 295 (2015)

    Article  ADS  Google Scholar 

  26. T.B. Settersten, A. Dreizler, R.L. Farrow, J. Chem. Phys. 117, 3173 (2002)

    Article  ADS  Google Scholar 

  27. T. Etzkorn, B. Klotz, S. Sörensen, I.V. Patroescu, I. Barnes, K.H. Becker, U. Platt, Atmos. Environ. 33, 525 (1999)

    Article  ADS  Google Scholar 

  28. S. Fally, M. Carleer, A.C. Vandaele, J. Quant. Spectrosc. Radiat. Transf. 110, 766 (2009)

    Article  ADS  Google Scholar 

  29. N. Nijegorodov, R. Mabbs, D.P. Winkoun, Acta A 59, 595 (2003)

    Article  Google Scholar 

  30. S. Faust, Characterisation of Organic Fuel Tracers for Laser-Based Quantitative Diagnostics of Fuel Concentration, Temperature, and Equivalence Ratio in Practical Combustion Processes (Universität Duisburg-Essen, Duisburg, 2013)

    Google Scholar 

  31. H. Wadi, E. Pollak, J. Chem. Phys. 110, 11890 (1999)

    Article  ADS  Google Scholar 

  32. Y. He, E. Pollak, J. Chem. Phys. 116, 6088 (2002)

    Article  ADS  Google Scholar 

  33. G.S. Beddard, G.R. Fleming, O.L.J. Gijzeman, G. Porter, Proc. R. Soc. Lond. A 340, 519, (1974)

    Article  ADS  Google Scholar 

  34. M.C. Thurber, F. Grisch, B.J. Kirby, M. Votsmeier, R.K. Hanson, Appl. Opt. 37, 4963 (1998)

    Article  ADS  Google Scholar 

  35. J.D. Koch, R.K. Hanson, Appl. Phys. B 76, 319 (2003)

    Article  ADS  Google Scholar 

  36. M. Jacon, C. Lardeux, R. Lopez-Delgado, A. Tramer, Chem. Phys. Lett. 24, 145 (1977)

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding by the Deutsche Forschungsgemeinschaft (SCHU 1369/28) and the FVV (Forschungsvereinigung Verbrennungskraftmaschinen) Bioptic III project, FVV-Nr. 9000010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thorsten Benzler.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benzler, T., Endres, T., Dreier, T. et al. Temperature, pressure, and oxygen quenching behavior of fluorescence spectra and lifetimes of gas-phase o-xylene and 1,2,4-trimethylbenzene. Appl. Phys. B 124, 70 (2018). https://doi.org/10.1007/s00340-018-6937-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-018-6937-6

Navigation