Skip to main content
Log in

LIISim: a modular signal processing toolbox for laser-induced incandescence measurements

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Evaluation of measurement data for laser-induced incandescence (LII) is a complex process, which involves many processing steps starting with import of data in various formats from the oscilloscope, signal processing for converting the raw signals to calibrated signals, application of models for spectroscopy/heat transfer and finally visualization, comparison, and extraction of data. We developed a software tool for the LII community that helps to evaluate, exchange, and compare measurement data among research groups and facilitate the application of this technique by providing powerful tools for signal processing, data analysis, and visualization of experimental results. A common file format for experimental data and settings simplifies inter-laboratory comparisons. It can be further used to establish a public measurement database for standardized flames or other soot/synthetic nanoparticle sources. The open-source concept and public access to the software development should encourage other scientists to validate and further improve the implemented algorithms and thus contribute to the project. In this paper, we present the structure of the LIISim software including the materials database concept, signal-processing algorithms, and the implemented models for spectroscopy and heat transfer. With two application cases, we show the operation of the software how data can be analyzed and evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. C. Schulz, B.F. Kock, M. Hofmann, H. Michelsen, S. Will, B. Bougie, R. Suntz, G. Smallwood, Appl. Phys. B 83(3), 333–354 (2006)

    Article  ADS  Google Scholar 

  2. H.A. Michelsen, C. Schulz, G.J. Smallwood, S. Will, Prog. Energy Combust. Sci. 51, 2–48 (2015)

    Article  Google Scholar 

  3. T. Dreier, C. Schulz, Powder Technol. 287, 226–238 (2016)

    Article  Google Scholar 

  4. A.V. Filippov, M.W. Markus, P. Roth, J. Aerosol Sci. 30(1), 71–87 (1999)

    Article  ADS  Google Scholar 

  5. R.L. Vander Wal, T.M. Ticich, J.R. West, Appl. Opt. 38(27), 5867–5879 (1999)

    Article  ADS  Google Scholar 

  6. Y. Murakami, T. Sugatani, Y. Nosaka, The Journal of Physical Chemistry A 109(40), 8994–9000 (2005)

    Article  ADS  Google Scholar 

  7. T. Lehre, R. Suntz, H. Bockhorn, Proc. Combust. Inst. 30(2), 2585–2593, (2005)

    Article  Google Scholar 

  8. A. Eremin, E. Gurentsov, C. Schulz, J. Phys. D Appl. Phys. 41(5),  055203 (2008)

    Article  ADS  Google Scholar 

  9. S. Maffi, F. Cignoli, C. Bellomunno, S. De Iuliis, G. Zizak, Spectrochim. Acta Part B Atomic Spectrosc. 63(2), 202–209 (2008)

    Article  ADS  Google Scholar 

  10. T.A. Sipkens, R. Mansmann, K.J. Daun, N. Petermann, J.T. Titantah, M. Karttunen, H. Wiggers, T. Dreier, C. Schulz, Appl. Phys. B 116(3), 623–636 (2014)

    Article  ADS  Google Scholar 

  11. K. Daun, J. Menser, R. Mansmann, S.T. Moghaddam, T. Dreier, C. Schulz, Journal of Quantitative Spectrosc. Radiat. Transfer 197, 3–11 (2017)

    Article  ADS  Google Scholar 

  12. J. Menser, K. Daun, T. Dreier, C. Schulz, Appl. Phys. B 122(11), 277 (2016)

    Article  ADS  Google Scholar 

  13. T.A. Sipkens, N.R. Singh, K.J. Daun, Appl. Phys. B 123(1), 14 (2017)

    Article  ADS  Google Scholar 

  14. F. Cignoli, S. De Iuliis, V. Manta, G. Zizak, Appl. Opt. 40(30), 5370–5378 (2001)

    Article  ADS  Google Scholar 

  15. D.R. Snelling, G.J. Smallwood, F. Liu, ÖL. Gülder, W.D. Bachalo, Appl. Opt. 44(31), 6773–6785 (2005)

    Article  ADS  Google Scholar 

  16. T. Lehre, B. Jungfleisch, R. Suntz, H. Bockhorn, Appl. Opt. 42(12), 2021–2030 (2003)

    Article  ADS  Google Scholar 

  17. F. Goulay, P.E. Schrader, X. López-Yglesias, H.A. Michelsen, Appl. Phys. B 112(3), 287–306 (2013)

    Article  ADS  Google Scholar 

  18. R. Mansmann, T. Dreier, C. Schulz, Appl Opt 56(28), 7849–7860 (2017)

    Article  Google Scholar 

  19. F. Goulay, P.E. Schrader, H.A. Michelsen, Appl. Phys. B 100(3), 655–663 (2010)

    Article  ADS  Google Scholar 

  20. L.A. Melton, Appl. Opt. 23(13), 2201–2208 (1984)

    Article  ADS  Google Scholar 

  21. B. Kock, B. Tribalet, C. Schulz, P. Roth, Combust. Flame 147(1–2), 79–92 (2006)

    Article  Google Scholar 

  22. H.A. Michelsen, F. Liu, B.F. Kock, H. Bladh, A. Boiarciuc, M. Charwath, T. Dreier, R. Hadef, M. Hofmann, J. Reimann, S. Will, P.E. Bengtsson, H. Bockhorn, F. Foucher, K.P. Geigle, C. Mounaïm-Rousselle, C. Schulz, R. Stirn, B. Tribalet, R. Suntz, Appl. Phys. B 87(3), 503–521 (2007)

    Article  ADS  Google Scholar 

  23. C. Schulz, Laser-induced incandescence: quantitative interpretation, modelling, application, in Proceedings international bunsen discussion meeting and workshop, Duisburg, Germany, 25–28 September 2005, CEUR-WS.org. http://ceur-ws.org/Vol-195. Accessed 20 Jan 2018

  24. R. Suntz, H. Bockhorn, Laser-induced incandescence: quantitative interpretation, modelling, applications in Proceedings 2nd international discussion meeting and workshop, Bad Herrenalb, Germany, 2–4 August 2006, CEUR-WS.org. http://ceur-ws.org/Vol-211. Accessed 20 Jan 2018

  25. P. Desgroux, Laser-induced incandescence 2012, in Proceedings 5th international workshop on laser-induced incandescence, Le Touquet, France, 8–11 May 2012, CEUR-WS.org. http://ceur-ws.org/Vol-865. Accessed 20 Jan 2018

  26. A. Nanthaamornphong, K. Morris, D.W.I. Rouson, H.A. Michelsen, A case study: agile development in the community laser-induced incandescence modeling environment (CLiiME), in 2013 5th international workshop on software engineering for computational science and engineering (SE-CSE) (2013), pp. 9–18

  27. A. Nanthaamornphong, J.C. Carver, K. Morris, H.A. Michelsen, D.W.I. Rouson, Comput. Sci. Eng. 16(3), 36–46 (2014)

    Article  Google Scholar 

  28. M. Hofmann, B. Kock, C. Schulz, A web-based interface for modeling laser-induced incandescence (LIISim), in Proceedings of the European Combustion Meeting,(Kreta, 2007)

  29. A.M. Hofmann, PhD dissertation, Heidelberg University, 2006

  30. M. Hofmann, B.F. Kock, T. Dreier, H. Jander, C. Schulz, Appl. Phys. B 90(3–4), 629–639 (2007)

    ADS  Google Scholar 

  31. M. Leschowski, PhD dissertation, University of Duisburg-Essen, 2016

  32. E. Cenker, G. Bruneaux, T. Dreier, C. Schulz, Appl. Phys. B 119(4), 745–763 (2015)

    Article  Google Scholar 

  33. E. Cenker, G. Bruneaux, T. Dreier, C. Schulz, Appl. Phys. B 118(2), 169–183 (2014)

    Article  ADS  Google Scholar 

  34. E. Cenker, K. Kondo, G. Bruneaux, T. Dreier, T. Aizawa, C. Schulz, Appl. Phys. B 119(4), 765–776 (2015)

    Article  Google Scholar 

  35. S. Maffi, S. De Iuliis, F. Cignoli, G. Zizak, Appl. Phys. B 104(2), 357–366 (2011)

    Article  ADS  Google Scholar 

  36. S. De Iuliis, M. Urciuolo, A. Cammarota, S. Maffi, R. Chirone, G. Zizak, XXXIV Meeting of the Italian Section of the Combustion Institute (Rome, 2011)

  37. S. De Iuliis, F. Cignoli, G. Zizak, Appl. Opt. 44(34), 7414–7423 (2005)

    Article  ADS  Google Scholar 

  38. T.A. Sipkens, P.J. Hadwin, S.J. Grauer, K.J. Daun, Appl Opt 56(30), 8436–8445 (2017)

    Article  Google Scholar 

  39. C.F. Bohren, D.R. Huffman, Absorption and scattering of light by small particles. (John Wiley & Sons, 2008)

  40. The Qt Framework, July 2015. http://www.qt.io

  41. C. Boost, Libraries, November 2013. http://www.boost.org/

  42. Qwt library, June 2016. http://qwt.sourceforge.net/

  43. J.J. Moré, Numerical analysis (Springer, Berlin, Heidelberg, 1978), pp. 105–116

    Book  Google Scholar 

  44. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical recipes 3rd edition: the art of scientific computing. (Cambridge University Press, Cambridge, 2007)

    MATH  Google Scholar 

  45. ÖL. Gülder, D.R. Snelling, R.A. Sawchuk, Symp. (Int.) Combust. 26 (2), 2351–2358, (1996)

    Article  Google Scholar 

  46. B. Quay, T.W. Lee, T. Ni, R.J. Santoro, Combust. Flame 97(3), 384–392 (1994)

    Article  Google Scholar 

  47. J.R. Dormand, P.J. Prince, J. Comput. Appl. Math. 6(1), 19–26 (1980)

    Article  MathSciNet  Google Scholar 

  48. R. Lemaire, M. Mobtil, Appl. Phys. B 119(4), 577–606 (2015)

    Article  Google Scholar 

  49. R. Mansmann, K. Thomson, G. Smallwood, T. Dreier, C. Schulz, Opt. Express 25(3), 2413 (2017)

    Article  ADS  Google Scholar 

  50. D.R. Snelling, K.A. Thomson, F. Liu, G.J. Smallwood, Appl. Phys. B 96(4), 657–669 (2009)

    Article  ADS  Google Scholar 

  51. R.C. Aster, B. Borchers, C.H. Thurber, Parameter estimation and inverse problems. (Elsevier Acad. Press, Amsterdam, 2005)

    MATH  Google Scholar 

  52. B.F. Kock, Zeitaufgelöste Laserinduzierte Inkandeszens (TR-LII): Partikelgrößenmessung in einem Dieselmotor und einem Gasphasenreaktor. (Cuvillier, Göttingen, 2006)

  53. F. Liu, K.J. Daun, D.R. Snelling, G.J. Smallwood, Appl. Phys. B 83(3), 355–382 (2006)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We gratefully thank Stanislav Musikhin (University of Duisburg-Essen, Germany) for testing the software and giving helpful feedback. We acknowledge funding through the German Research Foundation via SCHU1369/14 and SCHU1369/20.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raphael Mansmann.

Electronic supplementary material

Appendices

Appendix A

1.1 Levenberg–Marquardt algorithm

For a given data vector y of the length m and for n parameters a and a vector of standard deviations \({\sigma _i}\), the residuals for a given model \({y_{{\text{mod}}}}\left( {{x_i},{\mathbf{a}}} \right)\) (spectroscopic or heat-transfer model) can be described as

$${f_i}\left( {\mathbf{a}} \right)={\text{~}}\frac{{{y_i} - {y_{{\text{mod}}}}\left( {{x_i},{\mathbf{a}}} \right)}}{{{{{\upsigma}}_i}}}\quad i=1,2, \ldots ,m,$$
(11)

and

$${\mathbf{F}}\left( {\mathbf{a}} \right)={\text{~}}\left[ {\begin{array}{*{20}{c}} {{f_1}({\mathbf{a}})} \\ \vdots \\ {{f_m}({\mathbf{a}})} \end{array}} \right] \in {{\mathbb{R}}^m}.$$
(12)

The goal is now to minimize the nonlinear least-squares problem for the parameters a

$${\text{arg}}\mathop {\hbox{min} }\limits_{{\mathbf{a}}} f\left( {\mathbf{a}} \right)$$
(13)

with

$$f\left( {\mathbf{a}} \right)={\text{~}}\mathop \sum \limits_{{i=1}}^{m} {f_i}{\left( {\mathbf{a}} \right)^2}.$$
(14)

The gradient of \(f\left( {\mathbf{a}} \right)\) can be written in matrix notation as

$$\nabla f\left( {\mathbf{a}} \right)=2{\mathbf{J}}{\left( {\mathbf{a}} \right)^\text{T}}{\mathbf{F}}\left( {\mathbf{a}} \right) \in {{\mathbb{R}}^m},$$
(15)

where J(a) is the Jacobian

$${\mathbf{J}}({\mathbf{a}})=~\left[ {\begin{array}{*{20}{c}} {\frac{{\partial {f_i}}}{{\partial {a_1}}}}& \cdots &{\frac{{\partial {f_1}}}{{\partial {a_n}}}} \\ \vdots & \ddots & \vdots \\ {\frac{{\partial {f_m}}}{{\partial {a_1}}}}& \cdots &{\frac{{\partial {f_m}}}{{\partial {a_n}}}} \end{array}} \right] \in {{\mathbb{R}}^{m \times n}},$$
(16)

and D half of the Hessian matrix:

$${\nabla ^2}f\left( {\mathbf{a}} \right) \approx 2{\mathbf{J}}{\left( {\mathbf{a}} \right)^\text{T}}{\mathbf{J}}\left( {\mathbf{a}} \right)=2{\mathbf{D}}.$$
(17)

For each iteration, the gradient of the parameters a can be found by solving [51]:

$$\left( {{\mathbf{J}}{{\left( {\mathbf{a}} \right)}^\text{T}}{\mathbf{J}}\left( {\mathbf{a}} \right)+{{\uplambda}}{\mathbf{I}}} \right){{\Delta}}{\mathbf{a}}={\text{~}} - {\mathbf{J}}{\left( {{{\mathbf{a}}^{k}}} \right)^\text{T}}{\mathbf{F}}\left( {{{\mathbf{a}}^k}} \right),$$
(18)

which can be transformed using the Cholesky decomposition to the form \({\mathbf{L}}{{\mathbf{L}}^{\text{T}}}{\mathbf{x}}={\mathbf{b}}~\) with

$$\begin{gathered} {\mathbf{L}}{{\mathbf{L}}^{\text{T}}}=\left( {{\mathbf{D}}+{{\uplambda}}{\mathbf{I}}} \right) \hfill \\ {\mathbf{x}}={\Delta\mathbf{a}} \hfill \\ {\mathbf{b}}={\text{~}} - {\mathbf{J}}{\left( {{{\mathbf{a}}^k}} \right)^{\text{T}}}{\mathbf{F}}\left( {{{\mathbf{a}}^k}} \right). \hfill \\ \end{gathered}$$
(19)

Now x can be found by forward \({\mathbf{Ly}}={\mathbf{b}}\) and backward substitution \({{\mathbf{L}}^{\text{T}}}{\mathbf{x}}={\varvec{y}},\) which gives the new parameter approximation for the next iteration k:

$${{\mathbf{a}}^{{k}+1}}={{\mathbf{a}}^{k}}+\Delta {\mathbf{a}}.$$
(20)

In LIISim, the parameters \({{\mathbf{a}}^{k}}\) are visualized for the temperature fit in “AnalysisTools Temperature Fit” and for the heat-transfer modeling in the FitCreator module.

Appendix B

Implemented heat-transfer models from literature [22]. The heat transfer rates are defined in the HeatTransferModel child classes in the “calculations/models/” folder of the source code.

The following materials and gas mixture properties are calculated for all models according:

Name

Variable

Symbol (original)

Symbol (LIISim)

Equation

Unit

Specific heat capacity of the particle

c_p_kg

\({c_{\text{s}}}\)

\({c_{\text{p}}}\)

\({c_{\text{p}}}={C_{{\text{p}},{\text{mol}}}}/{M_{\text{p}}}\)

J kg−1 K−1

Thermal velocity of gas molecules

c_tg

\({c_{{\text{tg}}}}({T_{\text{g}}})\)

\({c_{{\text{tg}}}}({T_{\text{g}}})\)

\({c_{{\text{tg}}}}=~{\left( {\frac{{8~{k_{\text{B}}}{N_{\text{A}}}{T_{\text{g}}}}}{{\pi {M_{mix}}}}} \right)^{\frac{1}{2}}}\)

m s−1

Molar heat capacity of gas mixture

C_p_mol

\({C_{{\text{p,mix}}}}\)

\({C_{p,{\text{mix}}}}=\mathop \sum \limits_{i}^{n} {x_i}{C_{{\text{p}},{\text{g}},i}}\)

J mol−1 K−1

Heat capacity ratio

gamma

\(\gamma ({T_{\text{g}}})\)

\(\gamma ({T_{\text{g}}})\)

\(\gamma \left( {{T_{\text{g}}}} \right)=\frac{{{C_{{\text{p}},{\text{mix}}}}}}{{{C_{{\text{p}},{\text{mix}}}} - R}}\)

Molar mass of gas mixture

molar_mass

\({M_{{\text{mix}}}}\)

\({M_{{\text{mix}}}}=\mathop \sum \limits_{i}^{n} {x_i}{M_{{\text{g}},i}}\)

kg mol−1

2.1 Kock model

2.1.1 Materials properties (Soot_Kock)

Name

Variable

Type

Symbol (original)

Symbol (LIISim)

a 0

a 1

a 2

a 3

a 4

a 5

a 6

a 7

a 8

Unit

Comment

Accommodation coefficient

alpha_T_eff

const

\({\alpha _{\text{T}}}\)

\({\alpha _{\text{T}}}\)

0.23

 

Accommodation coefficient

theta_e

const

\({\alpha _{\text{M}}}\)

\({\theta _{\text{e}}}\)

1.0

 

Molar heat capacity

C_p_mol

poly2a

\({C_{p,{\text{mol}}}}\)

22.5566

0.0013

− 1.8195 × 106

J mol−1 K−1

Calculated from given \({c_{\text{s}}}\)

Total emissivity

eps

const

\(\varepsilon\)

\(\varepsilon\)

1.0

 

Molar mass

molar_mass

const

\({W_{\text{s}}}\)

\({M_{\text{p}}}\)

0.012011

kg mol−1

 

Molar mass of vapor

molar_mass_v

const

\({W_{\text{v}}}\)

\({M_{\text{v}}}\)

0.036033

kg mol−1

 

Density

rho_p

const

\({\rho _{\text{s}}}\)

\({\rho _{\text{p}}}\)

1860

kg m− 3

 

Enthalpy of evaporation

H_v

const

\({{\Delta}}{H_{\text{v}}}\)

\({{\Delta}}{H_{\text{v}}}\)

790776.6

J mol− 1

 

Reference pressure

p_v_ref

const

\({p_{{\text{ref}}}}\)

\({p_{\text{v}}}^{{\text{*}}}\)

61.5

Pa

Clausius–Clapeyron

Reference temperature

T_v_ref

const

\({T_{{\text{ref}}}}\)

\({T_{\text{v}}}^{{\text{*}}}\)

3000

K

Clausius–Clapeyron

  1. a \(f\left( T \right)={a_0}+{a_1}T+{a_2}{T^2}+{a_3}{T^3}+{a_4}{T^{ - 1}}+{a_5}{T^{ - 2}}\)

2.1.2 Gas mixture properties (Kock-Nitrogen-100%)

Composition:

Gas

Variable

Symbol

Fraction

Nitrogen_Kock

x

\(x\)

1.0

2.1.3 Gas properties (Nitrogen_Kock)

Name

Variable

Type

Symbol (original)

Symbol (LIISim)

a 0

a 1

a 2

a 3

a 4

a 5

Unit

Molar mass

molar_mass

const

\({M_{\text{g}}}\)

\({M_{\text{g}}}\)

0.028014

kg mol−1

Molar heat capacitya

C_p_mol

poly2b

\({C_{{\text{mp}},{\text{g}}}}\)

\({C_{p,{\text{g}}}}\)

28.58

0.00377

− 50,000

J mol− 1 K− 1

  1. aFor nitrogen from [52]
  2. b \(f\left( T \right)={a_0}+{a_1}T+{a_2}{T^2}+{a_3}{T^3}+{a_4}{T^{ - 1}}+{a_5}{T^{ - 2}}\)

2.2 Heat-transfer model (HTM_KockSoot)

Evaporation:

$${\dot {Q}_{{\text{evap}}}}= - \frac{{{{\Delta}}{H_{\text{v}}}}}{{{M_{\text{v}}}}}~{\dot {u}_{{\text{evap}}}},$$
(21)
$${\dot {u}_{{\text{evap}}}}= - {{{\theta}}_{\text{e}}}\frac{1}{4}{{\uppi}}~d_{{\text{p}}}^{2}~{c_{{\text{tv}}}}{\rho _{\text{v}}},$$
(22)
$${c_{{\text{tv}}}}=~{\left( {\frac{{8~{k_{\text{B}}}{N_{\text{A}}}{T_{\text{p}}}}}{{\pi {M_{\text{v}}}}}} \right)^{\frac{1}{2}}},$$
(23)
$${\rho _{\text{v}}}=\frac{{{p_{\text{v}}}~~{M_{\text{v}}}}}{{R~{T_{\text{p}}}}},$$
(24)
$${p_{\text{v}}}={p_{\text{v}}}^{*}~{\text{exp}}\left( { - \frac{{{{\Delta}}{H_{\text{v}}}~}}{R}~\left( {\frac{1}{{{T_{\text{p}}}}} - \frac{1}{{{T_{\text{v}}}^{*}}}} \right)} \right).$$
(25)

Conduction:

$${\dot {Q}_{{\text{cond,fm}}}}=\frac{{{\alpha _{{\text{T~}}}}\pi ~d_{{{\text{p~}}}}^{2}{p_{{\text{g~}}}}{c_{{\text{tg}}}}}}{8}~\left( {\frac{{\gamma +1}}{{\gamma - 1}}} \right)\left( {\frac{{{T_{\text{p}}}}}{{{T_{\text{g}}}}} - 1} \right),$$
(26)
$${c_{{\text{tg}}}}=~{\left( {\frac{{8~{k_{\text{B}}}{N_{\text{A}}}{T_{\text{g}}}}}{{\pi {M_{{\text{mix}}}}}}} \right)^{\frac{1}{2}}}.$$
(27)

Radiation:

$${\dot {Q}_{{\text{rad}}}}=\pi ~d_{{\text{p}}}^{2}~\varepsilon ~\sigma (T_{{\text{p}}}^{4} - T_{{\text{g}}}^{4})~.$$
(28)

2.3 Liu model

2.3.1 Materials properties (Soot_Liu)

Name

Variable

Type

Symbol (original)

Symbol (LIISim)

a 0

a 1

a 2

a 3

a 4

a 5

a 6

Unit

Comment

Accommodation coefficient

alpha_T_eff

const

\({\alpha _{\text{T}}}\)

\({\alpha _{\text{T}}}\)

0.37

 

Accommodation coefficient

theta_e

const

\({\alpha _{\text{M}}}\)

\({\theta _{\text{e}}}\)

0.77

 

Molar heat capacity

C_p_mol

polya

 

\({C_{p,{\text{mol}}}}\)

3.54288

3.55694 × 10− 2

− 2.55018 × 10− 5

9.83713 × 10− 9

− 2.10385 × 10− 12

2.35752 × 10− 16

− 1.07879 × 10− 20

J mol− 1 K−1

Valid from 1200 to 5500 K; calculated from given \({c_{\text{s}}}\)

Total emissivity

eps

const

\(\varepsilon\)

\(\varepsilon\)

0.4

 

Molar mass

molar_mass

const

\({W_{\text{v}}}\)

\({M_{\text{p}}}\)

0.012011

kg mol−1

 

Molar mass of vapor

molar_mass_v

const

\({W_1}\)

\({M_{\text{v}}}\)

17.179 × 10−3

6.8654 × 10− 7

2.9962 × 10− 9

− 8.5954 × 10− 13

1.0486 × 10− 16

kg mol−1

 

Density

rho_p

const

\({\rho _{\text{s}}}\)

\({\rho _{\text{p}}}\)

1860

kg m−3

 

Enthalpy of evaporation

H_v

polya

\({{\Delta}}{h_{\text{v}}}\)

\({{\Delta}}{H_{\text{v}}}\)

2.05398 × 105

7.366 × 102

− 0.40713

1.1992 × 10− 4

− 1.7946 × 10− 8

1.0717 × 10− 12

J mol−1

 

Vapor pressure

p_v

exppolyb

\({p_v}\)

\({p_{\text{v}}}\)

101,325 (unit conversion)

− 122.96

9.0558 × 10− 2

− 2.7637 × 10− 5

4.1754 × 10− 9

− 2.4875 × 10− 13

Pa

Original unit: [atm] from fits to data

  1. a \(f\left( T \right)={a_0}+{a_1}T+{a_2}{T^2}+{a_3}{T^3}+{a_4}{T^4}+{a_5}{T^5}+{a_6}{T^6}+{a_7}{T^7}+{a_8}{T^8}\)
  2. b \(~f\left( T \right)={a_0}+{a_1}{\text{exp}}({a_2}+{a_3}T+{a_4}{T^2}+{a_5}{T^3}+{a_6}{T^4}+{a_7}{T^5})\)

2.3.2 Gas mixture properties (Liu_Flame)

Composition:

Gas

Variable

Symbol

Fraction

FlameAir_Liu

x

\(x\)

1.0

Properties (manually set for composition):

Name

Variable

Type

Symbol (original)

Symbol (LIISim)

a 0

a 1

a 2

a 3

a 4

Unit

Heat capacity ratioa

gamma_eqn

polyb

\(\gamma\)

\(\gamma\)

1.4221163416

− 1.8636002383 × 10−4

8.0783894569 × 10−8

− 1.6425082302 × 10−11

1.2750021975 × 10−15

  1. aFor flame mixture from [53]
  2. b \(f\left( T \right)={a_0}+{a_1}T+{a_2}{T^2}+{a_3}{T^3}+{a_4}{T^4}+{a_5}{T^5}+{a_6}{T^6}+{a_7}{T^7}+{a_8}{T^8}\)

2.3.3 Gas properties (FlameAir_Liu)

Name

Variable

Type

Symbol (original)

Symbol (LIISim)

a 0

Unit

Molar mass

molar_mass

const

\({M}_{\text{g}}\)

0.02874

kg mol− 1

2.4 Heat-transfer model (HTM_Liu)

Evaporation:

$${\dot {Q}_{{\text{evap}}}}= - \frac{{~\Delta {H_{\text{v}}}}}{{{M_{\text{v}}}}}{\dot {u}_{{\text{evap}}}},$$
(29)
$${\dot {u}_{{\text{evap}}}}= - \frac{{\pi d_{{\text{p}}}^{2}{M_{\text{v}}}{\theta _{\text{e}}}{p_{\text{v}}}}}{{R{T_{\text{p}}}}}{\left( {\frac{{R{T_{\text{p}}}}}{{2\pi {M_{\text{v}}}}}} \right)^K},$$
(30)

with \(K=0.5.\)


Conduction:

$${\dot {Q}_{{\text{cond}}}}=\frac{{\pi d_{{\text{p}}}^{2}{\alpha _{\text{T}}}{p_0}}}{{2{T_{\text{g}}}}}~\sqrt {\frac{{R{T_{\text{g}}}}}{{2\pi {M_{{\text{mix}}}}}}} \left( {\frac{{{\gamma ^*}+1}}{{{\gamma ^*} - 1}}} \right)\left( {{T_{\text{p}}} - {T_{\text{g}}}} \right),$$
(31)
$$\frac{1}{{{\gamma ^*} - 1}}=\frac{1}{{T - {T_0}}}\mathop \int \limits_{{{T_0}}}^{T} \frac{1}{{\gamma (T^{\prime}) - 1}}{\text{d}}T^{\prime}.$$
(32)

This heat-transfer model uses polynomial fitting coefficients for calculation of \(\gamma \left( T \right)\). These are provided through the “gamma_eqn” property of the LIISim implementation in the GasMixture database. If \(~~\gamma \left( T \right)\) is not defined, the heat capacity of the gas mixture \({C_{p,{\text{mix}}}}(T)\) is used to calculate \(\gamma \left( T \right)\) according to:

$${{\upgamma}}\left( T \right)=\frac{{{C_{{\text{p}},{\text{mix}}}}(T)}}{{{C_{{\text{p}},{\text{mix}}}}(T) - R}}.$$
(33)

Radiation:

$${\dot {Q}_{{\text{rad}}}}=\frac{{199{{{\uppi}}^3}d_{{\text{p}}}^{3}{{\left( {{k_{\text{B}}}T} \right)}^5}\varepsilon }}{{h{{\left( {hc} \right)}^3}}}.$$
(34)

2.5 Melton model

2.5.1 Materials properties (Soot_Melton(workshop))

Name

Variable

Type

Symbol (original)

Symbol (LIISim)

a0

Unit

Comment

Accommodation coefficient

alpha_T_eff

const

\({\alpha _{\text{T}}}\)

\({\alpha _{\text{T}}}\)

0.3

 

Accommodation coefficient

theta_e

const

\({\alpha _{\text{M}}}\)

\({\theta _{\text{e}}}\)

1.0

 

Molar heat capacity

C_p_mol

const

\({C_{p,{\text{mol}}}}\)

22.8

J mol−1 K−1

acalculated from given \({c_{\text{s}}}\)

Molar mass

molar_mass

const

\({W_{\text{s}}}\)

\({M_{\text{p}}}\)

0.012

kg mol− 1

 

Molar mass of vapor

molar_mass_v

const

\({W_{\text{v}}}\)

\({M_{\text{v}}}\)

0.036

kg mol− 1

 

Density

rho_p

const

\({\rho _{\text{s}}}\)

\({\rho _{\text{p}}}\)

2260

kg m− 3

 

Enthalpy of evaporation

H_v

const

\({{\Delta}}{H_{\text{v}}}\)

\({{\Delta}}{H_{\text{v}}}\)

7.78 × 105

J mol− 1

 

Reference pressure

p_v_ref

const

\({p_{{\text{ref}}}}\)

\({p_{\text{v}}}^{{\text{*}}}\)

100,000

Pa

Clausius–Clapeyron

Reference temperature

T_v_ref

const

\({T_{{\text{ref}}}}\)

\({T_{\text{v}}}^{{\text{*}}}\)

3915

K

Clausius–Clapeyron

  1. a \({C_{p,{\text{mol}}}}={c_{s,\text{Melton}}}{M_{\text{p}}}\)

2.5.2 Gas mixture properties (Melton-Nitrogen-100%)

Composition:

Gas

Variable

Symbol

Fraction

Nitrogen_Melton

x

\(x\)

1.0

Properties (manually set for composition)

Name

Variable

Type

Symbol (original)

Symbol (LIISim)

a 0

a 1

Unit

Comment

Thermal conductivity

therm_cond

const

\({\kappa _{\text{a}}}\)

\({\kappa _{\text{a}}}\)

0.1068

W/m/K

Original unit W/cm/K

Mean free path

L

polya

\(L\)

\(L\)

2.355 × 10−10

m

Original unit: cm

  1. a \(f\left( T \right)={a_0}+{a_1}T+{a_2}{T^2}+{a_3}{T^3}+{a_4}{T^4}+{a_5}{T^5}+{a_6}{T^6}+{a_7}{T^7}+{a_8}{T^8}\)

2.5.3 Gas properties (Nitrogen_Melton)

Name

Variable

Type

Symbol (original)

Symbol (LIISim)

a0

Unit

Comment

Molar heat capacity

C_p_mol

const

\(-\)

\({C_{{\text{p,g}}}}\)

36.0295

J mol−1 K−1

a calculated from given\(\gamma (1800\;{\text{K}})=1.3\)

  1. a \(\gamma (1800\;{\text{K}})=1.3=\frac{{{C_{\text{p}}}}}{{{C_{\text{p}}} - R}} \Rightarrow {C_{\text{p}}}=\frac{{1.3}}{{0.3}}R\)

2.6 Heat-transfer model (HTM_Melton)

Evaporation:

$${\dot {Q}_{{\text{evap}}}}= - ~\frac{{\Delta {H_{\text{v}}}}}{{{M_{\text{p}}}}}~{\dot {u}_{{\text{evap}}}}.$$
(35)

This model uses molar mass of solid species in Eq. (35).

$${\dot {u}_{{\text{evap}}}}= - \frac{{{{\uppi}}~d_{{\text{p}}}^{2}{M_{\text{v}}}{{{\uptheta}}_{\text{e}}}{p_{\text{v}}}~}}{{R{T_{\text{p}}}}}{\left( {\frac{{R{T_{\text{p}}}}}{{2{M_{\text{v}}}}}} \right)^{0.5}},$$
(36)
$${p_{\text{v}}}={p_{\text{v}}}^{*}~{\text{exp}}\left( { - \frac{{\Delta {H_{\text{v}}}}}{R}~\left( {\frac{1}{{{T_{\text{p}}}}} - \frac{1}{{{T_{\text{v}}}^{*}}}} \right)} \right).$$
(37)

Conduction:

$${\dot {Q}_{{\text{cond}}}}=\frac{{2{\kappa _{\text{a}}}\pi d_{{\text{p}}}^{2}}}{{{d_{\text{p}}}+G~L\left( {{T_{\text{g}}}} \right)}}~\left( {{T_{\text{p}}} - {T_{\text{g}}}} \right),$$
(38)
$$G=~\frac{{8f}}{{{\alpha _{\text{T}}}\left( {\gamma +1} \right)}},$$
(39)
$$f=~\frac{{9\gamma - 5}}{4}.$$
(40)

Radiation:

Not included in this model.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mansmann, R., Terheiden, T., Schmidt, P. et al. LIISim: a modular signal processing toolbox for laser-induced incandescence measurements. Appl. Phys. B 124, 69 (2018). https://doi.org/10.1007/s00340-018-6934-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-018-6934-9

Navigation