Skip to main content
Log in

A broadband Tm/Ho-doped fiber laser tunable from 1.8 to 2.09 µm for intracavity absorption spectroscopy

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

A broadband tunable Tm/Ho-doped fiber laser is developed for sensitive in situ measurements of intracavity absorption spectra in the spectral range of 4780–5560 cm−1. This spectral range includes an atmospheric transmission window enabling sensitive measurements of various species. The spectral bandwidth of laser emission varies from 20 to 60 cm−1 and is well suitable for multicomponent spectroscopy. The sensitivity achieved in cw operation corresponds to an effective absorption path length of Leff = 20 km, with a spectral noise of less than 1%. The spectroscopic system is applied for measurements of absorption spectra of H2O, NH3 and for simultaneous in situ detection of three isotopes of CO2 in human breath, which is important for medical diagnostics procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M.W. Sigrist, R. Bartlome, D. Marinov, J.M. Rey, D.E. Vogler, H. Wächter, Trace gas monitoring with infrared laser-based detection schemes. Appl. Phys. B 90, 289–300 (2008)

    Article  ADS  Google Scholar 

  2. Y. Yao, A.J. Hoffman, C.F. Gmachl, Mid-infrared quantum cascade lasers. Nat. Photon. 6, 432–439 (2012)

    Article  ADS  Google Scholar 

  3. O. Henderson-Sapir, J. Munch, D.J. Ottaway, Mid-infrared fiber lasers at and beyond 3.5 µm using dual-wavelength pumping. Opt. Lett. 39, 493–496 (2014)

    Article  ADS  Google Scholar 

  4. V.M. Baev, T. Latz, P.E. Toschek, Laser intracavity absorption spectroscopy. Appl. Phys. B 69, 171–202 (1999)

    Article  ADS  Google Scholar 

  5. B. Löhden, S. Kuznetsova, K. Sengstock, V.M. Baev, A. Goldman, S. Cheskis, B. Pálsdóttir, Fiber laser intracavity absorption spectroscopy for in situ multicomponent gas analysis in the atmosphere and combustion environments. Appl. Phys. B 102, 331–344 (2011)

    Article  ADS  Google Scholar 

  6. P. Fjodorow, M. Fikri, C. Schulz, O. Hellmig, V.M. Baev, Time-resolved detection of temperature, concentration, and pressure in a shock tube by intracavity absorption spectroscopy. Appl. Phys. B 122, 159 (2016). https://doi.org/10.1007/s00340-016-6434-8

    Article  ADS  Google Scholar 

  7. P. Fjodorow, I. Baev, O. Hellmig, K. Sengstock, V.M. Baev, Sensitive, time-resolved, broadband spectroscopy of single transient processes. Appl. Phys. B 120, 667 (2015). https://doi.org/10.1007/s00340-015-6181-2

    Article  ADS  Google Scholar 

  8. A.J. Fleisher, B.J. Bjork, T.Q. Bui, K.C. Cossel, M. Okumura, J. Ye, Mid-infrared time-resolved frequency comb spectroscopy of transient free radicals. J. Phys. Chem. Lett. 5(13), 2241–2246 (2014)

    Article  Google Scholar 

  9. C. Abd Alrahman, A. Khodabakhsh, F.M. Schmidt, Z. Qu, A. Foltynowicz, Cavity-enhanced optical frequency comb spectroscopy of high-temperature H2O in a flame. Opt. Express 22, 13889 (2014)

    Article  ADS  Google Scholar 

  10. P. Fjodorow, O. Hellmig, V.M. Baev, H.B. Levinsky, A.V. Mokhov, Intracavity absorption spectroscopy of formaldehyde from 6230 to 6420 cm–1. Appl. Phys. B 123, 147 (2017). https://doi.org/10.1007/s00340-017-6725-8

    Article  ADS  Google Scholar 

  11. A. Stark, L. Correia, M. Teichmann, S. Salewski, C. Larsen, V.M. Baev, P.E. Toschek, Intracavity absorption spectroscopy with thulium-doped fibre laser. Opt. Commun. 215, 113 (2003)

    Article  ADS  Google Scholar 

  12. I.E. Gordon, L.S. Rothman, C. Hill, R.V. Kochanov, Y. Tan, P.F. Bernath, M. Birk, V. Boudon, A. Campargue, K.V. Chance, B.J. Drouin, J.-M. Flaud, R.R. Gamache, J.T. Hodges, D. Jacquemart, V.I. Perevalov, A. Perrin, K.P. Shine, M.-A.H. Smith, J. Tennyson, G.C. Toon, H. Tran, V.G. Tyuterev, A. Barbe, A.G. Császár, V.M. Devi, T. Furtenbache, J.J. Harrison, J.-M. Hartmann, A. Jolly, T.J. Johnson, T. Karman, I. Kleiner, A.A. Kyuberis, J. Loos, O.M. Lyulin, S.T. Massie, S.N. Mikhailenko, N. Moazzen-Ahmadi, H.S.P. Müller, O.V. Naumenko, A.V. Nikitin, O.L. Polyansky, M. Rey, M. Rotger, S.W. Sharpe, K. Sung, E. Starikov, S.A. Tashkun, J. Vande Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, E.J. Zak, The HITRAN2016 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 203, 3–69 (2017)

    Article  ADS  Google Scholar 

  13. J. Geng, J.I. Lunine, G.H. Atkinson, Absolute intensities and pressure-broadening coefficients of 2-mm CO2 absorption features: intracavity laser spectroscopy. Appl. Opt. 40(15), 2551–2560 (2001)

    Article  ADS  Google Scholar 

  14. N.P. Vagin, A.A. lonin, I.V. Kochetov, A.P. Napartovich, Y.P. Podmar’kov, M.P. Frolov, N.N. Yuryshev, Measurement of the O2 (b1Σg + − a1g) transition probability by the method of intracavity laser spectroscopy. Quant. Electron. 35(4), 378–384 (2005)

    Article  ADS  Google Scholar 

  15. V.M. Baev, G. Gaida, H. Schröder, P.E. Toschek, Quantum fluctuations of a multi-mode laser oscillator. Opt. Commun. 38, 309–313 (1981)

    Article  ADS  Google Scholar 

  16. J. Hunkemeier, R. Böhm, V.M. Baev, P.E. Toschek, Spectral dynamics of multimode Nd3+- and Yb3+-doped fibre lasers with intracavity absorption. Opt. Commun. 176, 417–428 (2000)

    Article  ADS  Google Scholar 

  17. E.V. Stepanov, Methods of highly sensitive gas analysis of molecular biomarkers in study of exhaled air. Phys. Wave Phenom. 15, 149 (2007)

    Article  ADS  Google Scholar 

  18. F.M. Schmidt, O. Vaittinen, M. Metsälä, M. Lehto, C. Forsblom, P.-H. Groop, L. Halonen, Ammonia in breath and emitted from skin. J. Breath Res. 7, 017109 (2013)

    Article  ADS  Google Scholar 

  19. A.S. Modak, Stable isotope breath tests in clinical medicine: a review. J. Breath Res. 1, 104003 (2007)

    Article  Google Scholar 

  20. S.N. Andreev, E.S. Mironchuk, I.V. Nikolaev, V.N. Ochkin, M.V. Spiridonov, S.N. Tskhai, High precision measurements of the 13CO2/12CO2 isotope ratio at atmospheric pressure in human breath using a 2 µm diode laser. Appl. Phys. B 104, 73 (2011)

    Article  ADS  Google Scholar 

  21. A. Maity, S. Som, C. Ghosh, G.D. Banik, S.B. Daschakraborty, S. Ghosh, S. Chaudhuri, M. Pradhan, Oxygen-18 stable isotope of exhaled breath CO2 as a non-invasive marker of Helicobacter pylori infection. J. Anal. At. Spectrom. 29, 2251–2255 (2014)

    Article  Google Scholar 

  22. C. Ghosh, G.D. Banik, A. Maity, S. Som, A. Chakraborty, C. Selvan, S. Ghosh, S. Chowdhury, M. Pradhan, Oxygen-18 isotope of breath CO2 linking to erythrocytes carbonic anhydrase activity: a biomarker for pre-diabetes and type 2 diabetes. Sci. Rep. 5, 8137 (2015)

    Article  ADS  Google Scholar 

  23. S. Guillon, E. Pili, P. Agrinier, Using a laser-based CO2 carbon isotope analyser to investigate gas transfer in geological media. Appl. Phys. B 107, 449 (2012)

    Article  ADS  Google Scholar 

  24. D.J. Des Marais, J.G. Moore, Carbon and its isotopes in mid-oceanic basaltic glasses. ‎Earth Planet. Sci. Lett. 69, 43 (1984)

    Article  ADS  Google Scholar 

  25. T.B. Sauke, J.F. Becker, Stable isotope laser spectrometer for exploration of Mars. Planet. Space Sci. 46, 805 (1998)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Fjodorow.

Additional information

This article is part of the topical collection “Mid-infrared and THz Laser Sources and Applications” guest edited by Wei Ren, Paolo De Natale and Gerard Wysocki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fjodorow, P., Hellmig, O. & Baev, V.M. A broadband Tm/Ho-doped fiber laser tunable from 1.8 to 2.09 µm for intracavity absorption spectroscopy. Appl. Phys. B 124, 62 (2018). https://doi.org/10.1007/s00340-018-6932-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-018-6932-y

Navigation