Applied Physics B

, 124:63 | Cite as

Cavity-enhanced absorption detection of H2S in the near-infrared using a gain-switched frequency comb laser

  • S. Chandran
  • S. Mahon
  • A. A. Ruth
  • J. Braddell
  • M. D. Gutiérrez


A custom-designed gain-switched frequency comb laser was passively coupled of to a medium-finesse cavity in the region between 6346 and 6354 cm−1 for the development of a prototype cavity enhanced absorption setup. The setup was applied to static gas detection of hydrogen sulfide at the parts per thousand level in a laboratory environment. A Fourier transform spectrometer was used for signal detection. The experimental performance of the setup was characterized in this proof-of-principle investigation; advantages, drawbacks and future scope of the approach are discussed in this article.



The support by Science Foundation Ireland’s (SFI) TIDA Programme (14/TIDA/2415) is gratefully acknowledged. Enterprise Ireland (EI) is also providing financial support under the Technology Innovation Development Award scheme, Commercialisation Fund (CF 2017 0683B). We would like to thank Prof Frank Peters and Prof John McInerney for the loan of an OSA for this project. We are grateful to Mr Christy Roche and Mr Joe Sheehan for their excellent technical assistance.


  1. 1.
    J. Ye, S.T. Cundiff (eds.), Femtosecond Optical Frequency Comb: Principle, Operation, and Applications. (Kluwer Academic Publishers/Springer, Norwell MA, 2005)Google Scholar
  2. 2.
    T.W. Hänsch, Nobel lecture: passion for precision. Rev. Mod. Phys. 78, 1297–1309 (2006)ADSCrossRefGoogle Scholar
  3. 3.
    J.L. Hall, Nobel lecture: defining and measuring optical frequencies. Rev. Mod. Phys. 78, 1279–1295 (2006)ADSCrossRefGoogle Scholar
  4. 4.
    S.A. Diddams, The evolving optical frequency comb. J. Opt. Soc. Am. B 27, B51–B62 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    N.R. Newbury, Searching for applications with a fine-tooth comb. Nat. Photonics 5, 186–188 (2011)ADSCrossRefGoogle Scholar
  6. 6.
    T.W. Hänsch, N. Picqué, Laser spectroscopy and frequency combs. J. Phys. Conf. Ser. 467, 012001 (2013)CrossRefGoogle Scholar
  7. 7.
    F. Adler, M.J. Thorpe, K.C. Cossel, J. Ye, Cavity-enhanced direct frequency comb spectroscopy: technology and applications. Annu. Rev. Anal. Chem. 3, 175–205 (2010)CrossRefGoogle Scholar
  8. 8.
    S.A. Diddams, L. Hollberg, V. Mbele, Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb. Nature 445, 627–630 (2007)CrossRefGoogle Scholar
  9. 9.
    L. Nugent-Glandorf, T. Neely, F. Adler, A.J. Fleisher, K.C. Cossel, B. Bjork, T. Dinneen, J. Ye, S.A. Diddams, Mid-infrared virtually imaged phased array spectrometer for rapid and broadband trace gas detection. Opt. Lett. 37, 3285–3287 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    C. Gohle, B. Stein, A. Schliesser, T. Udem, T.W. Hänsch, Frequency comb vernier spectroscopy for broadband, high-resolution, high-sensitivity absorption and dispersion spectra. Phys. Rev. Lett. 99, 263902 (2007)ADSCrossRefGoogle Scholar
  11. 11.
    R. Grilli, G. Méjean, C. Abd Alrahman, I. Ventrillard, S. Kassi, D. Romanini, Cavity-enhanced multiplexed comb spectroscopy down to the photon shot noise. Phys. Rev. A 85, 051804 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    J. Mandon, G. Guelachvili, N. Picqué, Fourier transform spectroscopy with a laser frequency comb. Nat. Photonics 3, 99–102 (2009)ADSCrossRefGoogle Scholar
  13. 13.
    F. Adler, P. Masłowski, A. Foltynowicz, K.C. Cossel, T.C. Briles, I. Hartl, J. Ye, Mid-infrared Fourier transform spectroscopy with a broadband frequency comb. Opt. Express 18, 21861–21872 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T.W. Hänsch, N. Picqué, Cavity-enhanced dual-comb spectroscopy. Nat. Photonics 4, 55–57 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    M. Zeitouny, P. Balling, P. Křen, P. Mašika, R.C. Horsten, S.T. Persijn, H.P. Urbach, N. Bhattacharya, Multi-correlation Fourier transform spectroscopy with the resolved modes of a frequency comb laser. Ann. Phys. 525, 437–442 (2013)CrossRefGoogle Scholar
  16. 16.
    A. Khodabakhsh, A.C. Johansson, A. Foltynowicz, Noise-immune cavity-enhanced optical frequency comb spectroscopy: a sensitive technique for high-resolution broadband molecular detection. Appl. Phys. B 119, 87–96 (2015)ADSCrossRefGoogle Scholar
  17. 17.
    A.J. Fleisher, D.A. Long, Z.D. Reed, J.T. Hodges, D.F. Plusquellic, Coherent cavity-enhanced dual-comb spectroscopy. Opt. Express 24, 10424–10434 (2016)ADSCrossRefGoogle Scholar
  18. 18.
    N. Coddington, W. Newbury, Swann, Dual-comb spectroscopy. Optica 3, 414–426 (2016)CrossRefGoogle Scholar
  19. 19.
    T. Gherman, D. Romanini, Mode-locked cavity-enhanced absorption spectroscopy. Opt. Express 10, 1033–1042 (2002)ADSCrossRefGoogle Scholar
  20. 20.
    A. Foltynowicz, P. Masłowski, A.J. Fleisher, B.J. Bjork, J. Ye, Cavity-enhanced optical frequency comb spectroscopy in the mid-infrared application to trace detection of hydrogen peroxide. Appl. Phys. B 110, 163–175 (2013)ADSCrossRefGoogle Scholar
  21. 21.
    M.J. Thorpe, J. Ye, Cavity-enhanced direct frequency comb spectroscopy. Appl. Phys. B 91, 397–414 (2008)ADSCrossRefGoogle Scholar
  22. 22.
    P.M. Anandarajah, R. Maher, Y. Xu, S. Latkowski, J. O’Carroll, S.G. Murdoch, R. Phelan, J. O’Gorman, L.P. Barry, Generation of coherent multicarrier signals by gain switching of discrete mode lasers. IEEE Photonics J. 3, 112 (2011)CrossRefGoogle Scholar
  23. 23.
    P. Anandarajah, R. Zhou, R. Maher, M.D. Guitérrez-Pascual, F. Smyth, V. Vujicic, L.P. Barry, Flexible optical comb source for super channel systems. Optical Fiber Communication Conference, Proceedings Paper# OTh3I.8, Anaheim CA, USA, 2013Google Scholar
  24. 24.
    M.D. Guitérrez, J. Braddell, F. Smyth, L.P. Barry, Monolithically integrated 1 × 4 comb de-multiplexer based on injection locking. 18th European Conference on Integrated Optics, Proceedings Paper# ECIO-p37, Warsaw, Poland, 2016Google Scholar
  25. 25.
    B. Jerez, P. Martín-Mateos, E. Prior, C. de Dios, P. Acedo, Dual optical frequency comb architecture with capabilities from visible to mid-infrared. Opt. Express 24, 14986–14994 (2016)ADSCrossRefGoogle Scholar
  26. 26.
    W. Chen, A.A. Kosterev, F.K. Tittel, X. Gao, W. Zhao, H2S trace concentration measurements using off-axis integrated cavity output spectroscopy in the near-infrared. Appl. Phys. B 90, 311–315 (2008)ADSCrossRefGoogle Scholar
  27. 27.
    S.E. Fiedler, A. Hese, A.A. Ruth, Incoherent broadband cavity-enhanced absorption spectroscopy. Chem. Phys. Lett. 371, 284–294 (2003)ADSCrossRefGoogle Scholar
  28. 28.
    A.A. Ruth, J. Orphal, S.E. Fiedler, Cavity enhanced Fourier transform absorption spectroscopy using an incoherent broadband light source. Appl. Opt. 46, 3611–3616 (2007)ADSCrossRefGoogle Scholar
  29. 29.
    J. Orphal, A.A. Ruth, High-resolution Fourier-transform cavity-enhanced absorption spectroscopy in the near-infrared using an incoherent broad-band light source. Opt. Express 16, 19232–19243 (2008)ADSCrossRefGoogle Scholar
  30. 30.
    D.M. O’Leary, A.A. Ruth, S. Dixneuf, J. Orphal, R. Varma, The near infrared cavity-enhanced absorption spectrum of methylcyanide. J. Quant. Spectr. Rad. Trans. 113, 1138–1147 (2012)ADSCrossRefGoogle Scholar
  31. 31.
    R. Raghunandan, A. Perrin, A.A. Ruth, J. Orphal, First analysis of the 2ν 1 + 3ν 3 band of NO2 around 7192 cm− 1. J. Mol. Spectrosc. 297, 4–10 (2014)ADSCrossRefGoogle Scholar
  32. 32.
    S. Chandran, R. Varma, Near infrared cavity enhanced absorption spectra of atmospherically relevant ether-1,4-dioxane. Spectrochim. Acta A Mol. Biomol. Spectr. 153, 704–708 (2016)ADSCrossRefGoogle Scholar
  33. 33.
    L.S. Rothmana, I.E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P.F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L.R. Browni, A. Campargue, K. Chance, E.A. Cohen, L.H. Coudert, V.M. Devi, B.J. Drouin, A. Fayt, J.-M. Flaud, R.R. Gamachem, J.J. Harrison, J.-M. Hartmann, C. Hill, J.T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R.J. LeRoy, G. Li, D.A. Long, O.M. Lyulin, C.J. Mackie, S.T. Massie, S. Mikhailenko, H.S.P. Müller, O.V. Naumenko, A.V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E.R. Polovtseva, C. Richard, M.A.H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G.C. Toon, V.G. Tyuterev, G. Wagner, The HITRAN 2012 molecular spectroscopic database. J. Quant. Spectr. Rad. Trans. 130, 4–50 (2013)ADSCrossRefGoogle Scholar
  34. 34.
    S.W. Sharpe, T.J. Johnson, R.L. Sams, P.M. Chu, G.C. Rhoderick, P.A. Johnson, Gas-phase databases for quantitative infrared spectroscopy. Appl. Spectrosc. 58, 1452–1461 (2004)ADSCrossRefGoogle Scholar
  35. 35.
    O.N. Ulenikov, A.-W. Liu, E.S. Bekhtereva, O.V. Gromova, L.-Y. Hao, S.-M. Hu, High-resolution Fourier transform spectrum of H2S in the region of the second hexade. J. Mol. Spectrosc. 234, 270–278 (2005)ADSCrossRefGoogle Scholar
  36. 36.
    G. Modugno, C. Corsi, M. Gabrysch, M. Inguscio, Detection of H2S at the ppm level using a telecommunication diode laser. Opt. Com. 145, 76–80 (1998)ADSCrossRefGoogle Scholar
  37. 37.
    J.J. Olivero, R.L. Longbothum, Empirical fits to the Voigt line width: a brief review. J. Quant. Spectr. Rad. Trans. 17, 233–236 (1977)ADSCrossRefGoogle Scholar
  38. 38.
    W.C. Kuster, P.D. Goldan, Quantitation of the losses of aqueous sulfur compounds to enclosure wall. Environ. Sci. Technol. 21, 810–815 (1987)ADSCrossRefGoogle Scholar
  39. 39.
    M.G. Zabetacis, Flammability Characteristics of Combustible Gases and Vapors, Bulletin 627. (US Department of the Interior, Bureau of Mines, Washington, 1965)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Physics Department and Environmental Research InstituteUniversity College CorkCorkIreland
  2. 2.Pilot Photonics Limited, Invent CentreDublin City UniversityDublin 9Ireland
  3. 3.Scottish Microelectronics CentreEdinburghUK

Personalised recommendations