Skip to main content
Log in

Two-dimensional temperature and carbon dioxide concentration profiles in atmospheric laminar diffusion flames measured by mid-infrared direct absorption spectroscopy at 4.2 μm

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We present a multi-line flame thermometry technique based on mid-infrared direct absorption spectroscopy of carbon dioxide at its \(v_3\) fundamental around 4.2 μm that is particularly suitable for sooting flames. Temperature and concentration profiles of gas phase molecules in a flame are important characteristics to understand its flame structure and combustion chemistry. One of the standard laboratory flames to analyze polycyclic aromatic hydrocarbons (PAH) and soot formation is laminar non-premixed co-flow flame, but PAH and soot introduce artifact to most non-contact optical measurements. Here we report an accurate diagnostic method of the temperature and concentration profiles of CO2 in ethylene diffusion flames by measuring its \(v_3\) vibrational fundamental. An interband cascade laser was used to probe the R-branch bandhead at 4.2 μm, which is highly sensitive to temperature change, free from soot interference and ambient background. Calibration measurement was carried out both in a low-pressure Herriott cell and an atmospheric pressure tube furnace up to 1550 K to obtain spectroscopic parameters for high-temperature spectra. In our co-flow flame measurement, two-dimensional line-of-sight optical depth of an ethylene/N2 laminar sooting flame was recorded by dual-beam absorption scheme. The axially symmetrical attenuation coefficient profile of CO2 in the co-flow flame was reconstructed from the optical depth by Abel inversion. Spatially resolved flame temperature and in situ CO2 volume fraction profiles were derived from the calibrated CO2 spectroscopic parameters and compared with temperature profiles measured by two-line atomic fluorescence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. H. Richter, J.B. Howard, Prog. Energy Combust. Sci. 26(4–6), 565 (2000)

    Article  Google Scholar 

  2. C.S. Mcenally, L.D. Pfefferle, A.M. Schaffer, M.B. Long, R.K. Mohammed, M.D. Smooke, M.B. Colkei, Proc. Combust. Inst. 28(2), 2063 (2000)

    Article  Google Scholar 

  3. S. Will, S. Schraml, A. Leipert, Symp. Int. Combust. 26(2), 2277 (1996)

    Article  Google Scholar 

  4. C. Schulz, B.F. Kock, M. Hofmann, H. Michelsen, S. Will, B. Bougie, R. Suntz, G. Smallwood, Appl. Phys. B 83(3), 333 (2006)

    Article  ADS  Google Scholar 

  5. R.J. Santoro, H.G. Semerjian, Symp. Int. Combust. 20(1), 997 (1985)

    Article  Google Scholar 

  6. S. De Iuliis, M. Barbini, S. Benecchi, F. Cignoli, G. Zizak, Combust. Flame 115(1–2), 253 (1998)

    Article  Google Scholar 

  7. A. D’Anna, A. Rolando, C. Allouis, P. Minutolo, A. D’Alessio, Proc. Combust. Inst. 30(1), 1449 (2005)

    Article  Google Scholar 

  8. M.D. Smooke, M.B. Long, B.C. Connelly, M.B. Colket, R.J. Hall, Combust. Flame 143(4), 613 (2005)

    Article  Google Scholar 

  9. O. Angrill, H. Geitlinger, T. Streibel, R. Suntz, H. Bockhorn, Proc. Combust. Inst. 28(2), 2643 (2000)

    Article  Google Scholar 

  10. H. Xu, F. Liu, S. Sun, Y. Zhao, S. Meng, W. Tang, Combust. Flame 177, 67 (2017)

    Article  Google Scholar 

  11. H. Jin, Y. Wang, K. Zhang, H. Guo, F. Qi, Proc. Combust. Inst. 34(1), 779 (2013)

    Article  Google Scholar 

  12. P.B. Kuhn, B. Ma, B.C. Connelly, M.D. Smooke, M.B. Long, Proc. Combust. Inst. 33(1), 743 (2011)

    Article  Google Scholar 

  13. D.D. Das, W.J. Cannella, C.S. McEnally, C.J. Mueller, L.D. Pfefferle, Proc. Combust. Inst. 36(1), 871 (2017)

    Article  Google Scholar 

  14. H. Liu, S. Zheng, H. Zhou, IEEE Trans. Instrum. Meas. 66(2), 315 (2017)

    Article  Google Scholar 

  15. R.L. Farrow, R.P. Lucht, W.L. Flower, R.E. Palmer, Symp. Int. Combust. 20(1), 1307 (1985)

    Article  Google Scholar 

  16. L.R. Boedeker, G.M. Dobbs, Symp. Int. Combust. 21(1), 1097 (1988)

    Article  Google Scholar 

  17. L.R. Boedeker, G.M. Dobbs, Combust. Sci. Technol. 46(3–6), 301 (1986)

    Article  Google Scholar 

  18. C.J. Kliewer, Y. Gao, T. Seeger, J. Kiefer, B.D. Patterson, T.B. Settersten, Proc. Combust. Inst. 33(1), 831 (2011)

    Article  Google Scholar 

  19. D. Gu, Z. Sun, G.J. Nathan, P.R. Medwell, Z.T. Alwahabi, B.B. Dally, Combust. Flame 167, 481 (2016)

    Article  Google Scholar 

  20. Z. Sun, B. Dally, G. Nathan, Z. Alwahabi, Combust. Flame 175, 270 (2017)

    Article  Google Scholar 

  21. C. Liu, L. Xu, J. Chen, Z. Cao, Y. Lin, W. Cai, Opt. Express 23(17), 22494 (2015)

    Article  ADS  Google Scholar 

  22. C. Liu, L. Xu, F. Li, Z. Cao, S.A. Tsekenis, H. McCann, Appl. Phys. B 120(3), 407 (2015)

    Article  ADS  Google Scholar 

  23. Z. Qu, R. Ghorbani, D. Valiev, F.M. Schmidt, Opt. Express 23(12), 16492 (2015)

    Article  ADS  Google Scholar 

  24. G. Zhang, J. Liu, Z. Xu, Y. He, R. Kan, Appl. Phys. B 122(1), 3 (2016)

    Article  ADS  Google Scholar 

  25. L. Zhang, F. Wang, H. Zhang, J. Yan, K. Cen, Chin. Opt. Lett. 14(11), 111201 (2016)

    Article  ADS  Google Scholar 

  26. S. Wagner, M. Klein, T. Kathrotia, U. Riedel, T. Kissel, A. Dreizler, V. Ebert, Appl. Phys. B 109(3), 533 (2012)

    Article  ADS  Google Scholar 

  27. M.P. Esplin, R.J. Huppi, G.A. Vanasse, Appl. Opt. 21(9), 1681 (1982)

    Article  ADS  Google Scholar 

  28. S.P. Bharadwaj, M.F. Modest, J. Quant. Spectrosc. Radiat. Transf. 103(1), 146 (2007)

    Article  ADS  Google Scholar 

  29. T. Ren, M.F. Modest, A. Fateev, S. Clausen, J. Quant. Spectrosc. Radiat. Transf. 151, 198 (2015)

    Article  ADS  Google Scholar 

  30. V. Evseev, A. Fateev, S. Clausen, J. Quant. Spectrosc. Radiat. Transf. 113(17), 2222 (2012)

    Article  ADS  Google Scholar 

  31. R.M. Mihalcea, D.S. Baer, R.K. Hanson, Appl. Opt. 37(36), 8341 (1998)

    Article  ADS  Google Scholar 

  32. M.E. Webber, S. Kim, S.T. Sanders, D.S. Baer, R.K. Hanson, Y. Ikeda, Appl. Opt. 40(6), 821 (2001)

    Article  ADS  Google Scholar 

  33. K. Sun, R. Sur, X. Chao, J.B. Jeffries, R.K. Hanson, R.J. Pummill, K.J. Whitty, Proc. Combust. Inst. 34(2), 3593 (2013)

    Article  Google Scholar 

  34. R. Sur, K. Sun, J.B. Jeffries, R.K. Hanson, Appl. Phys. B 115(1), 9 (2014)

    Article  ADS  Google Scholar 

  35. R. Sur, K. Sun, J.B. Jeffries, J.G. Socha, R.K. Hanson, Fuel 150, 102 (2015)

    Article  Google Scholar 

  36. A. Klose, G. Ycas, F.C. Cruz, D.L. Maser, S.A. Diddams, Appl. Phys. B 122(4), 1 (2016)

    Article  Google Scholar 

  37. T. Cai, G. Gao, M. Wang, G. Wang, Y. Liu, X. Gao, Appl. Phys. B 118(3), 471 (2015)

    Article  ADS  Google Scholar 

  38. A. Farooq, J.B. Jeffries, R.K. Hanson, Appl. Phys. B 90(3–4), 619 (2008)

    Article  ADS  Google Scholar 

  39. A. Farooq, J.B. Jeffries, R.K. Hanson, Appl. Opt. 48(35), 6740 (2009)

    Article  ADS  Google Scholar 

  40. P. Nau, J. Koppmann, A. Lackner, K. Kohse-Höinghaus, A. Brockhinke, Appl. Phys. B 118(3), 361 (2015)

    Article  ADS  Google Scholar 

  41. R.M. Spearrin, W. Ren, J.B. Jeffries, R.K. Hanson, Appl. Phys. B 116(4) 855 (2014)

    Article  ADS  Google Scholar 

  42. R.M. Spearrin, C.S. Goldenstein, I.A. Schultz, J.B. Jeffries, R.K. Hanson, Appl. Phys. B 117(2) 689 (2014)

    Article  Google Scholar 

  43. K. Wu, F. Li, X. Cheng, Y. Yang, X. Lin, Y. Xia, Appl. Phys. B 117(2), 659 (2014)

    Article  Google Scholar 

  44. J.J. Girard, R.M. Spearrin, C.S. Goldenstein, R.K. Hanson, Combust. Flame 178, 158 (2017)

    Article  Google Scholar 

  45. L.H. Ma, L.Y. Lau, W. Ren, Appl. Phys. B 123(3), 83 (2017)

    Article  ADS  Google Scholar 

  46. R. Villarreal, P.L. Varghese, Appl. Opt. 44(31), 6786 (2005)

    Article  ADS  Google Scholar 

  47. S. Wagner, B.T. Fisher, J.W. Fleming, V. Ebert, Proc. Combust. Inst. 32(1), 839 (2009)

    Article  Google Scholar 

  48. J.A. Silver, D.J. Kane, P.S. Greenberg, Appl. Opt. 34(15), 2787 (1995)

    Article  ADS  Google Scholar 

  49. W. Cai, D.J. Ewing, L. Ma, Comput. Phys. Commun. 179(4), 250 (2008)

    Article  ADS  Google Scholar 

  50. P.E. Best, P.L. Chien, R.M. Carangelo, P.R. Solomon, M. Danchak, I. Ilovici, Combust. Flame 85(3–4), 309 (1991)

    Article  Google Scholar 

  51. D.R. Snelling, K.A. Thomson, G.J. Smallwood, Ö.L. Gülder, Appl. Opt. 38(12), 2478 (1999)

    Article  ADS  Google Scholar 

  52. S. Johnson, Faddeeva W function implementation. http://ab-initio.mit.edu/wiki/index.php/faddeeva_w. Accessed 13 Mar 2018

  53. C.J. Dasch, Appl. Opt. 31(8), 1146 (1992)

    Article  ADS  Google Scholar 

  54. V. Dribinski, A. Ossadtchi, V.A. Mandelshtam, H. Reisler, Rev. Sci. Instrum. 73(7), 2634 (2002)

    Article  ADS  Google Scholar 

  55. Y. Zhang, C. Cao, Y. Li, W. Yuan, X. Yang, J. Yang, F. Qi, T.P. Huang, Y.Y. Lee, Energy Fuels 31(12), 14270 (2017)

    Article  Google Scholar 

  56. L.S. Rothman, I.E. Gordon, R.J. Barber, H. Dothe, R.R. Gamache, A. Goldman, V.I. Perevalov, S.A. Tashkun, J. Tennyson, J. Quant. Spectrosc. Radiat. Transf. 111(15), 2139 (2010)

    Article  ADS  Google Scholar 

  57. N.H. Ngo, D. Lisak, H. Tran, J.M. Hartmann, J. Quant. Spectrosc. Radiat. Transf. 129, 89 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank Prof. Bin Zhou from Southeast University for helpful discussion about the interpretation of non-soot absorbance. Financial support by National Natural Science Foundation of China (51606123, 91541201) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xunchen Liu.

Additional information

This article is part of the topical collection “Mid-infrared and THz Laser Sources and Applications” guest edited by Wei Ren, Paolo De Natale and Gerard Wysocki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Zhang, G., Huang, Y. et al. Two-dimensional temperature and carbon dioxide concentration profiles in atmospheric laminar diffusion flames measured by mid-infrared direct absorption spectroscopy at 4.2 μm. Appl. Phys. B 124, 61 (2018). https://doi.org/10.1007/s00340-018-6930-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-018-6930-0

Navigation