Skip to main content
Log in

Pulse shaping in the presence of enormous second-order dispersion in Al:ZnO/ZnO epsilon-near-zero metamaterial

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

A numerical study of the ultra-short pulse propagation in the aluminum-doped zinc oxide multi-layered metamaterial at the epsilon-near-zero spectral point is presented. The Drude model for dielectric permittivity and comparison with recent experimental data predict that damping frequency γD has the highest impact on the material losses and results in enormous second-order dispersion. Numerical simulations using both, the finite-difference time domain algorithm and the split-step Fourier method, show that variations of group velocity across the pulse at the epsilon-near-zero point results in a unique “soliton-like” propagation regime without nonlinearity for the propagation lengths of up to 300 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. A.F. Koenderink, A. Alù, A. Polman, Science 348, 516 (2015)

    Article  ADS  Google Scholar 

  2. N. Liberal, Engheta, Nat. Photonics 11, 149 (2017)

    Article  ADS  Google Scholar 

  3. M. Javani, M. Stockman, Phys. Rev. Lett. 117, 107404 (2016)

    Article  ADS  Google Scholar 

  4. L. Hau, S.E. Harris, Z. Dutton, C. Behroozi, Nature 397, 594 (1999)

    Article  ADS  Google Scholar 

  5. M. Kash, V. Sautenkov, A. Zibrov, L. Hollberg, G. Welch, M. Lukin, Y. Rostovtsev, E. Fry, M. Scully, Phys. Rev. Lett. 82, 5229 (1999)

    Article  ADS  Google Scholar 

  6. M. Bigelow, N. Lepeshkin, R. Boyd, Appl. Phys. Lett. 90, 11 (2003)

    Google Scholar 

  7. B. Toshihiko, Nat. Photonics 2, 465 (2008)

    Article  Google Scholar 

  8. Y. Vlasov, M. O’Boyle, H. Hamann, S. McNab, Nature 438, 65 (2005)

    Article  ADS  Google Scholar 

  9. R. Boyd, D. Gauthier, Progr. Opt. 43, 6 (2002)

    Google Scholar 

  10. J. Khurgin, Adv. Opt. Photonics 2, 287 (2010)

    Article  Google Scholar 

  11. M.A. Vincenti, D. de Ceglia, M. Scalora, Opt. Lett. 41, 3611 (2016)

    Article  ADS  Google Scholar 

  12. Y. Capretti, N. Wang, L. Engheta, Dal Negro, Opt. Lett. 40, 1500 (2015)

    Article  ADS  Google Scholar 

  13. M.A. Vincenti, D. de Ceglia, A. Ciattoni, M. Scalora, Phys. Rev. A 84, 063826 (2011)

    Article  ADS  Google Scholar 

  14. A. Ciattoni, A. Marini, C. Rizza, M. Scalora, F. Biancalana, Phys. Rev. A 87, 053853 (2013)

    Article  ADS  Google Scholar 

  15. A. Rizza, E. Ciattoni, Palange, Phys. Rev. A 83, 053805 (2011)

    Article  ADS  Google Scholar 

  16. H. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, V.M. Menon, Science 336, 283–205 (2012)

    Article  Google Scholar 

  17. G.V. Naik, J. Liu, A.V. Kildishev, V.M. Shalaev, A. Boltasseva, PNAS 109, 8834 (2012)

    Article  ADS  Google Scholar 

  18. P. Kelly, M. Liu, L. Kuznetsova, Appl. Opt. 55, 2993 (2016)

    Article  ADS  Google Scholar 

  19. K. Pradhan, R.M. Mundle, K. Santiago, J.R. Skuza, B. Xiao, K.D. Song, M. Bahoura, R. Cheaito, P.E. Hopkins, Sci. Rep. 4, 6415 (2014)

    Article  ADS  Google Scholar 

  20. T. Riley, T.A. Kieu, J.S.T. Smalley, H. Si, S.J. Athena Pan, K.W. Kim, A. Post, D.N. Kargar, X. Basov, Y. Pan, D. Fainman, D.J. Wang, Sirbuly, Phys. Status Solidi RRL 8, 948 (2014)

    Article  Google Scholar 

  21. L. Caspani, R.P.M. Kaipurath, M. Clerici, M. Ferrera, T. Roger, J. Kim, N. Kinsey, M. Pietrzyk, A. Di Falco, V.M. Shalaev, A. Boltasseva, D. Faccio, PRL 116, 233901 (2016)

    Article  ADS  Google Scholar 

  22. M.Z. Alam, I. De Leon, R.W. Boyd: Science 352, 795 (2016)

    Article  ADS  Google Scholar 

  23. N. Kinsey, C. DeVault, J. Kim, M. Ferrera, V.M. Shalaev, A. Boltasseva, Optica 2, 616 (2015)

    Article  Google Scholar 

  24. M. Gebhardt, C. Gaida, S. Hädrich, F. Stutzki, C. Jauregui, J. Limpert, A. Tünnermann, Opt. Lett. 40, 2770 (2015)

    Article  ADS  Google Scholar 

  25. T. Sorokina, V.V. Dvoyrin, N. Tolstik, E. Sorokin, IEEE J. Sel. Top. Quantum Electron. 20, 0903412 (2014)

    Article  Google Scholar 

  26. C.Y. Wang, L. Kuznetsova, V.M. Gkortsas, L. Diehl, F.X. Kärtner, M.A. Belkin, A. Belyanin, X. Li, D. Ham, H. Schneider, P. Grant, C.Y. Song, S. Haffouz, Z.R. Wasilewski, H.C. Liu, Federico Capasso Opt. Express 17, 12929 (2009)

    Article  ADS  Google Scholar 

  27. G. Agrawal, Nonlinear Fiber Optics. 4 edn. (Elsevier, Amsterdam, 2007)

    MATH  Google Scholar 

  28. R.W. Boyd, Nonlinear Optics (Academic, San Diego, 2003)

  29. L. Kuznetsova, F.W. Wise, Opt. Lett. 32, 2671 (2007)

    Article  ADS  Google Scholar 

  30. L. Kuznetsova, A. Chong, F.W. Wise, Opt. Lett. 31, 2640 (2006)

    Article  ADS  Google Scholar 

  31. A.S. Rogov, E.E. Narimanov, in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (paper FTh1G.4) (2017)

  32. M. Scalora, M.S. Syrchin, N. Akozbek, E.Y. Poliakov, G. D’Aguanno, N. Mattiucci, M.J. Bloemer, A.M. Zheltikov, Phys. Rev. Lett. 95, 013902 (2005)

    Article  ADS  Google Scholar 

  33. K.E. Oughstun, H. Xiao, Phys. Rev. Lett. 78, 642 (1997)

    Article  ADS  Google Scholar 

  34. P. Kelly, W. Zhang, M. Liu, L. Kuznetsova, Proc. SPIE 10344, 1034400 (2017)

    Google Scholar 

  35. C. Bacco, P. Kelly, L. Kuznetsova, J. Nanophotonics 10, 046003 (2016)

    Article  ADS  Google Scholar 

  36. N.L. Tsitsas, N. Rompotis, I. Kourakis, P.G. Kevrekidis, D.J. Frantzeskakis, Phys. Rev. E 79, 037601 (2009)

    Article  ADS  Google Scholar 

  37. L.D. Landau, E.M. Lifshitz, L.P. Pitaevskii, Course of Theoretical Physics, vol. 8, 2nd edn. (Reed, Oxford, 1984)

    Google Scholar 

  38. L.M. Brekhovskikh, Waves in Layered Media, 2nd edn. (Academic, London, 1980)

  39. Y. Yoshikawa, S. Adachi, Jpn. J. Appl. Phys. 36, 10 (1997)

    ADS  Google Scholar 

  40. M. Kadi, A. Smaali, R. Outemzbet, Surf. Coating Tech. 211, 45 (2012)

    Article  Google Scholar 

  41. R. Trebino, FROG: The Measurements of Ultrashort Laser Pulses. (Kluwer, Dordrecht, 2000)

    Google Scholar 

  42. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J.D. Joannopoulos, S.G. Johnson, Comput. Phys. Commun. 181, 687 (2010)

    Article  ADS  Google Scholar 

  43. K. Liu, J.F. Zhang, W. Xu, Zh..H. Zhu, C.C. Guo, X.J. Li, S.Q. Qin, Sci. Rep. 5, 1 (2015)

    Google Scholar 

  44. K.B. Chung, Opt. Express 19, 15705 (2011)

    Article  ADS  Google Scholar 

  45. A. Taflove, S.C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd edn. (Artech House, Boston, 2005)

  46. H.A. Lorentz, The Theory of Electrons (Dover Publications, New York, 1952)

  47. M. Newville, T. Stensitzki, D.B. Allen, M. Rawlik, A. Ingargiola, A. Nelson, Astrophysics Source Code Library (2016). http://cars9.uchicago.edu/software/python/lmfit/lmfit.pdf

  48. R. Storn, K. Price, J. Global Optim. 11, 341 (1997)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research was supported by UGP Grant from San Diego State University (242518). Priscilla Kelly gratefully acknowledges the financial support from National Science Foundation (NSF) (Graduate Research Fellowship Program 1321850). The authors acknowledge S. G. Johnson who made MEEP freely available to the community.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lyuba Kuznetsova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kelly, P., Kuznetsova, L. Pulse shaping in the presence of enormous second-order dispersion in Al:ZnO/ZnO epsilon-near-zero metamaterial. Appl. Phys. B 124, 60 (2018). https://doi.org/10.1007/s00340-018-6929-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-018-6929-6

Navigation