Skip to main content
Log in

Entanglement swapping and teleportation using Mach–Zehnder interferometer assisted with a cross-Kerr cell: generation of tripartite entangled state

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

In this paper, we outline new implementations for entanglement swapping and quantum teleportation using the Mach–Zehnder interferometer, where an external mode is coupled to an internal mode of the interferometer through a nonlinear cross-Kerr cell in the absence of losses and noises. The initial state of the total system contains two distinctly atom–field entangled states \(((AF)_{1,2})\), each previously generated via the Jaynes–Cummings model, besides an ancillary a-mode as the external mode of the Mach–Zehnder interferometer. Injecting the two-field states and a-mode into the Mach–Zehnder interferometer and then detecting both fields, the subset including the a-mode and the two atoms forms a tripartite entangled state. Therefore, entanglement swapping from \((AF)_{1,2}\) to the subsystem of two atoms and a-mode is appropriately performed. Next, we calculate success probability and fidelity. It is demonstrated that the maximum values of fidelity is achieved for the intensities of coherent field larger than 2. Finally, we show that the Mach–Zehnder interferometer may be used to teleport an entangled state with complete fidelity, by applying a quantum channel with an unknown state. The complete fidelity can be obtained by assuming that the dissipative factors are ignorable in the applied setups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. For a 50:50 beam splitter, with input modes 1,2 and output modes 3,4 we assume that the reflected beam suffers a \(\dfrac{\pi }{2}\) phase shift, then the input and output modes are related according to relations \(\hat{a}_3=\dfrac{1}{\sqrt{2}}(\hat{a}_1+i\hat{a}_2)\) and \(\hat{a}_4=\dfrac{1}{\sqrt{2}}(i\hat{a}_1+\hat{a}_2).\)

  2. We should thank the referee which reminded us about the Ref. [38].

  3. Here, the operator \(\hat{c}^\dagger \hat{c}\) in (1) is applied on mode 2, as it is apparent from Fig. 1, too.

  4. Here, the operator \(\hat{a}^\dagger \hat{a}\) in (2) is applied on the a-mode and the operator \(\hat{b}^\dagger \hat{b}\) acts upon mode 1, as is clear from Fig. 1, too.

References

  1. A. Peres, Quantum Theory: Concepts and Methods, vol. 57 (Springer, Berlin, 2006)

    MATH  Google Scholar 

  2. G. Alber, T. Beth, M. Horodecki, P. Horodecki, R. Horodecki, M. Rötteler, H. Weinfurter, R. Werner, A. Zeilinger, Quantum Information: An Introduction to Basic Theoretical Concepts and Experiments, vol. 173 (Springer, Berlin, 2003)

    MATH  Google Scholar 

  3. R. Daneshmand, M.K. Tavassoly, Ann. Phys. 529, 1600246 (2017)

    Article  Google Scholar 

  4. S.M. Barnett, Quantum Information (Oxford University Press, Oxford, 2009)

    MATH  Google Scholar 

  5. A.K. Ekert, Phys. Rev. Lett. 67, 661 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  6. C.H. Bennett, D.P. DiVincenzo, Nature 404, 247 (2000)

    Article  ADS  Google Scholar 

  7. D. Gonţa, P. van Loock, Appl. Phys. B 122, 118 (2016)

    ADS  Google Scholar 

  8. M. Uphoff, M. Brekenfeld, G. Rempe, S. Ritter, Appl. Phys. B 122, 46 (2016)

    Article  ADS  Google Scholar 

  9. C.H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, W.K. Wootters, Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  10. J. Torres, J. Bernád, G. Alber, Phys. Rev. A 90, 012304 (2014)

    Article  ADS  Google Scholar 

  11. M. Zukowski, A. Zeilinger, M.A. Horne, A.K. Ekert, Phys. Rev. Lett. 71, 4287 (1993)

    Article  ADS  Google Scholar 

  12. S. Bose, V. Vedral, P.L. Knight, Phys. Rev. A 57, 822 (1998)

    Article  ADS  Google Scholar 

  13. Q.H. Liao, G.Y. Fang, Y.Y. Wang, M.A. Ahmad, S. Liu, Eur. Phys. J. D 61, 475 (2011)

    Article  ADS  Google Scholar 

  14. S. Bose, V. Vedral, P.L. Knight, Phys. Rev. A 60, 194 (1999)

    Article  ADS  Google Scholar 

  15. R. Pakniat, M.K. Tavassoly, M.H. Zandi, Chin. Phys. B 25, 100300 (2016)

    Article  Google Scholar 

  16. A.D. dSouza, W.B. Cardoso, A.T. Avelar, B. Baseia, Phys. Scr. 80, 4 (2009)

    Article  Google Scholar 

  17. T.K. Liu, J.S. Wang, J. Feng, M.S. Zhan, Chin. Phys. Lett. 19, 1573 (2002)

    Article  ADS  Google Scholar 

  18. C.Y. Chen, Y. Yu, Commun. Theor. Phys. 45, 1023 (2006)

    Article  ADS  Google Scholar 

  19. R. Pakniat, M.K. Tavassoly, M.H. Zandi, Opt. Commun. 382, 381 (2017)

    Article  ADS  Google Scholar 

  20. A. Nourmandipour, M.K. Tavassoly, Phys. Rev. A 94, 022339 (2016)

    Article  ADS  Google Scholar 

  21. M. Ghasemi, M.K. Tavassoly, A. Nourmandipour, Eur. Phys. J. Plus 132, 531 (2017)

    Article  Google Scholar 

  22. D. Gonţa, P. Van Loock, Phys. Rev. A 84, 042303 (2011)

    Article  ADS  Google Scholar 

  23. D. Gonţa, P. van Loock, Phys. Rev. A 86, 052312 (2012)

    Article  ADS  Google Scholar 

  24. D. Gonţa, P. van Loock, Phys. Rev. A 88, 052308 (2013)

    Article  ADS  Google Scholar 

  25. Y.H. Kim, S.P. Kulik, Y. Shih, Phys. Rev. Lett. 86, 1370 (2001)

    Article  ADS  Google Scholar 

  26. L. Ye, G.C. Guo, Phys. Rev. A 70, 054303 (2004)

    Article  ADS  Google Scholar 

  27. W.B. Cardoso, A.T. Avelar, B. Baseia, N.G. de Almeida, Phys. Rev. A 72, 045802 (2005)

    Article  ADS  Google Scholar 

  28. Z.L. Cao, Y. Zhao, M. Yang, Phys. A 360, 17 (2006)

    Article  MathSciNet  Google Scholar 

  29. C. Gerry, P.L. Knight, Introductory Quantum Optics (Cambridge University Press, Cambridge, 2005)

    Google Scholar 

  30. M.D. Barrett, J. Chiaverini, T. Schaetz, J. Britton, W.M. Itano, J.D. Jost et al., Nature 429, 737 (2004)

    Article  ADS  Google Scholar 

  31. C.C. Gerry, R. Grobe, Phys. Rev. A 75, 034303 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  32. C.C. Gerry, Phys. Rev. A 59, 4095 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  33. W. Munro, K. Nemoto, T.P. Spiller, S.D. Barrett, P. Kok, R.G. Beausoleil, J. Opt. B: Quantum Semiclass. Opt. 7, S135 (2005)

    Article  ADS  Google Scholar 

  34. C.C. Gerry, A. Benmoussa, R.A. Campos, Phys. Rev. A 66, 013804 (2002)

    Article  ADS  Google Scholar 

  35. M.O. Scully, M.S. Zubairy, Quantum Optics (Cambridge University Press, Cambridge, 1997)

    Book  MATH  Google Scholar 

  36. B. Yurke, D. Stoler, Phys. Rev. Lett. 57, 13 (1986)

    Article  ADS  Google Scholar 

  37. A. Karimi, M.K. Tavassoly, Commun. Theor. Phys. 64, 341 (2015)

    Article  ADS  Google Scholar 

  38. C. Wittmann, M. Takeoka, K.N. Cassemiro, M. Sasaki, G. Leuchs, U.L. Andersen, Phys. Rev. Lett. 101(21), 210501 (2008)

    Article  ADS  Google Scholar 

  39. R. Pakniat, M.H. Zandi, M.K. Tavassoly, Eur. Phys. J. Plus 132, 3 (2017)

    Article  Google Scholar 

  40. M. Yang, W. Song, Z.L. Cao, Phys. Rev. A 71, 034312 (2005)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Kazem Tavassoly.

Appendix A: Calculation of the output state of the Mach–Zehnder interferometer for the input state \(\,\left| {0}\right\rangle _1\,\left| {1}\right\rangle _2\,\left| {\alpha }\right\rangle _a\)

Appendix A: Calculation of the output state of the Mach–Zehnder interferometer for the input state \(\,\left| {0}\right\rangle _1\,\left| {1}\right\rangle _2\,\left| {\alpha }\right\rangle _a\)

As is stated in Sect. 4, the total state which is injected into the Mach–Zehnder interferometer, is a combination of the field states \({F}_1\), \({F}_2\) and \({F}_a\) indicated as \(\,\left| {m}\right\rangle _1\,\left| {n}\right\rangle _2\,\left| {\alpha }\right\rangle _a\) in (9). Here, we obtain the output state of the interferometer, in detail, in which the input state is \(\,\left| {0}\right\rangle _1\,\left| {1}\right\rangle _2\,\left| {\alpha }\right\rangle _a\). If the state \(\,\left| {0}\right\rangle _1\,\left| {1}\right\rangle _2\,\left| {\alpha }\right\rangle _a\) is injected in the interferometer, the input state to \(\text {BS}_1\) is \(\,\left| {0}\right\rangle _1\,\left| {1}\right\rangle _2\). Then after passing the \(\text {BS}_1\), we have

$$\begin{aligned} \left| {0}\right\rangle _1\,\left| {1}\right\rangle _2\,\left| {\alpha }\right\rangle _a\xrightarrow {\text {BS}_1}\,\left| {\text {out}}\right\rangle _1=\dfrac{1}{\sqrt{2}}\big (i\,\left| {1}\right\rangle _1\,\left| {0}\right\rangle _2+\,\left| {0}\right\rangle _1\,\left| {1}\right\rangle _2\big )\,\left| {\alpha }\right\rangle _a. \end{aligned}$$
(30)

The action of the phase shifter \(\theta\) with unitary operator in (1) yields the stateFootnote 3

$$\begin{aligned} \,\left| {\text {out}}\right\rangle _1\xrightarrow {\text {PS}}\,\left| {\text {out}}\right\rangle _2=\dfrac{1}{\sqrt{2}}\big (i\,\left| {1}\right\rangle _1\,\left| {0}\right\rangle _2+\text {e}^{i\theta }\,\left| {0}\right\rangle _1\,\left| {1}\right\rangle _2\big )\,\left| {\alpha }\right\rangle _a. \end{aligned}$$
(31)

Now, we import the above state into the cross-Kerr medium which is described by the unitary operator in (2). Then, the resultant state is as belowFootnote 4

$$\begin{aligned} \,\left| {\text {out}}\right\rangle _2\xrightarrow {\text {CK}}\,\left| {\text {out}}\right\rangle _3=\dfrac{1}{\sqrt{2}}\big (i\,\left| {1}\right\rangle _1\,\left| {0}\right\rangle _2\,\left| {\alpha \text {e}^{-iKt}}\right\rangle _a+\text {e}^{i\theta }\,\left| {0}\right\rangle _1\,\left| {1}\right\rangle _2\,\left| {\alpha }\right\rangle _a\big ). \end{aligned}$$
(32)

Choosing \(Kt=\pi\) in (32), reduces it to the state

$$\begin{aligned} \,\left| {\text {out}}\right\rangle _3=\dfrac{1}{\sqrt{2}}\big (i\,\left| {1}\right\rangle _1\,\left| {0}\right\rangle _2\,\left| {-\alpha }\right\rangle _a+\text {e}^{i\theta }\,\left| {0}\right\rangle _1\,\left| {1}\right\rangle _2\,\left| {\alpha }\right\rangle _a\big ). \end{aligned}$$
(33)

In the next step, by crossing the state in (33) from the \(\text {BS}_2\), the resultant state reads as

$$\begin{aligned} \,\left| {\text {out}}\right\rangle _3\xrightarrow {\text {BS}_2}\,\left| {\text {out}}\right\rangle _4&=\dfrac{1}{2}\big [\big (i\,\left| {1}\right\rangle _1\,\left| {0}\right\rangle _2-\,\left| {0}\right\rangle _1\,\left| {1}\right\rangle _2\big )\,\left| {-\alpha }\right\rangle _a\nonumber \\&\quad +\text {e}^{i\theta }\big (\,\left| {0}\right\rangle _1\,\left| {1}\right\rangle _2+i\,\left| {1}\right\rangle _1\,\left| {0}\right\rangle _2\big )\,\left| {\alpha }\right\rangle _a\big ]. \end{aligned}$$
(34)

Finally, considering \(\theta =\pi\), the output state of the Mach–Zehnder interferometer is simplified to

$$\begin{aligned} \,\left| {\text {out}}\right\rangle _{\text {MZI}_1}=-\dfrac{1}{2}\big [i\,\left| {\widetilde{\psi _o}}\right\rangle _a\,\left| {1}\right\rangle _1\,\left| {0}\right\rangle _2+\,\left| {\widetilde{\psi _e}}\right\rangle _a\,\left| {0}\right\rangle _1\,\left| {1}\right\rangle _2\big ]. \end{aligned}$$
(35)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tavassoly, M.K., Pakniat, R. & Zandi, M.H. Entanglement swapping and teleportation using Mach–Zehnder interferometer assisted with a cross-Kerr cell: generation of tripartite entangled state. Appl. Phys. B 124, 64 (2018). https://doi.org/10.1007/s00340-018-6927-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-018-6927-8

Navigation