Skip to main content
Log in

Fabrication and performance of efficient thin circular polarization gratings with Bragg properties using bulk photo-alignment of a liquid crystalline polymer

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Thin circular polarization gratings, characterized by high diffraction efficiency and large, up to 42°, diffraction angles were created by polarization holography for the first time. The high efficiency of the gratings is the result of the specific properties of a photo-crosslinkable liquid crystalline polymer and a two-step photochemical/thermal processing procedure. A diffraction efficiency of up to 98% at 532 nm has been achieved for gratings with periods of 700 nm. In contrast to polarization gratings with larger periods these gratings exhibit Bragg properties. So one beam is either transmitted or diffracted depending on the direction of the circular polarization of the incident light, whereas the maximal diffraction efficiency is achieved only at the proper incident angle. The fabrication procedure consists of holographic exposure of the film at room temperature which provides the photo-selective cycloaddition of cinnamic ester groups. Upon subsequent thermal annealing above Tg bulk photo-alignment of the LC polymer film occurs enhancing the optical anisotropy within the grating. The holographic patterning provides high spatial resolution, the arbitrary orientation of the LC director as well as high optical quality, thermal and chemical stability of the final gratings. Highly efficient symmetric and slanted circular polarization gratings were fabricated with the proposed technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. T. Todorov, T. Tomova, L. Nikolova, Opt. Commun. 47, 123 (1983)

    Article  ADS  Google Scholar 

  2. L. Nikolova, T. Todorov, Opt. Acta. 31, 579–588 (1984)

    Article  ADS  Google Scholar 

  3. I. Shatalin, V. Kakichashvili, Sh. Kakichashvili: Sov. Tech. Phys. Lett. 13, 1051 (1987)

    Google Scholar 

  4. J. Tervo, T. Turunen, Opt. Lett. 25, 785 (2000)

    Article  ADS  Google Scholar 

  5. S. Nersisyan, N. Tabiryan, D. Steeves, B. Kimball, J. Nonlinear Opt. Phys. Mater. 18, 1 (2009)

    Article  ADS  Google Scholar 

  6. R. Komanduri, C. Oh, M. Escuti, Proc. SID. 40, 487 (2009)

    Article  Google Scholar 

  7. E. Nicolescu, M. Escuti, Proc. SPIE. 7050, 1 (2008)

    Google Scholar 

  8. E. Nicolescu, M. Escuti, Proc. SPIE. 6661, 666105 (2007)

    Article  Google Scholar 

  9. B. Kress, T. Starner,: Proc. SPIE 8720. 87200A-13 (2012)

  10. C. Oh, M. Escuti, Phys. Rev. A. 76, 043815 (2007)

    Article  ADS  Google Scholar 

  11. G.P. Crawford, J.N. Eakin, M.D. Radcliffe, A. Callan-Jones, R. Pelcovits, J. Appl. Phys. 98, 123102 (2005)

    Article  ADS  Google Scholar 

  12. L. Nikolova, P.S. Ramanujam, Polarization holography. (Cambridge University Press, UK, 2009)

    Book  Google Scholar 

  13. E. Collett, (Polarized Light: Fundamentals and Applications (Dekker, New York, 1993)

  14. C. Oh, M. Escuti, Opt. Lett. 33, 2287 (2008)

    Article  ADS  Google Scholar 

  15. R. Komanduri, C. Oh, M. Escuti, Phys. Rew. E. 76, 0217011 (2007)

    Article  Google Scholar 

  16. M. Escuti, C. Oh, C. Sanchez, C. Bastiaansen, D. Broer, Proc. SPIE. 6302, 630207 (2006)

    Article  Google Scholar 

  17. D. Yi. Weng, Yu Xu, X. Zhang, Lim, Sh. Wu: Opt. Express. 24, 17746 (2016)

    ADS  Google Scholar 

  18. H. Ono, A. Emoto, F. Takahashi, N. Kawatsuki, T. Hasegawa, J. Appl. Phys. 94, 1298 (2003)

    Article  ADS  Google Scholar 

  19. H. Ono, N. Kawatsuki, AZojomo. 1, 1 (2005)

    Google Scholar 

  20. A. Emoto, T. Matsumoto, A. Yamashita, T. Shioda, H. Ono, N. Kawatsuki, J. Appl. Phys. 106, 073505 (2009)

    Article  ADS  Google Scholar 

  21. R. Rosenhauer, Th Fischer, C. Czapla, J. Stumpe, A. Viñuales, M. Pinol, J. Serrano: Mol. Cryst. Liq. Cryst. 364, 295 (2001)

    Google Scholar 

  22. R. Rosenhauer, J. Stumpe, R. Giménez, M. Piñol, J. Serrano, A. Viñuales, D. Broer: Macromolecules. 44, 1438 (2011)

    ADS  Google Scholar 

  23. W.R. Klein, B.D. Cook, IEEE Trans. Sonics Ultrason. 14, 123 (1967)

    Article  Google Scholar 

  24. H. Kogelnik, Bell Syst. Tech. J. 488, 2909 (1969)

    Google Scholar 

  25. M.G. Moharam, L. Yong, L: Appl. Opt. 17, 1757 (1978)

    Article  ADS  Google Scholar 

  26. M. Ishiguro, D. Sato, A. Shishido, T. Ikeda: Langmuir. 23, 332 (2007)

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of the ZIM Program of the Bundesministerium für Wirtschaft und Technologie (BMWi) of Germany, ZIM/KF Project 2302408UW2. The authors wish to thank to M. Paech for providing the material systhesis and to R. Rosenhauer for her contributions to the material processing procedure and for the films preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oksana Sakhno.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakhno, O., Gritsai, Y., Sahm, H. et al. Fabrication and performance of efficient thin circular polarization gratings with Bragg properties using bulk photo-alignment of a liquid crystalline polymer. Appl. Phys. B 124, 52 (2018). https://doi.org/10.1007/s00340-018-6920-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-018-6920-2

Navigation