Applied Physics B

, 124:50 | Cite as

Deposition of nanocomposite Cu–TiO2 using heterogeneous colliding plasmas

  • Pramod K. Pandey
  • Raj K. Thareja
  • Ravi Pratap Singh
  • John T. Costello


The formation of CuTiO2 nanocomposites has been observed in an experiment in which laser plasma plumes of Cu and Ti collide and stagnate in an oxygen atmosphere. The inherent advantage of this technique lies in its simplicity and flexibility where laser, target composition and geometry along with ambient atmosphere are all controllable parameters through which the stoichiometry of the deposited nanocomposites may be selected. The experiment has been performed at three oxygen ambient pressures 10−4, 10−2, 100 mbar and we observe its effect on stoichiometry, and morphology of the deposited nanocomposites. Here, we show how the stoichiometry of deposited nanocomposites can be readily controlled by changing just one parameter, namely the ambient oxygen pressure. The different peaks of photoluminescence spectra \(\lambda =390{\text{ nm}}\;\left( {E=3.18{\text{ eV}}} \right)\) corresponding to the anatase phase of TiO2, along with the peaks at λ = 483 nm (E = 2.56 eV) and 582 nm (E = 2.13 eV) of deposited nanocomposites, shows the doping/blending effect on the band gaps which may potentially be of value in solar cell technology. The technique can, in principle, be extended to include nanocomposites of other materials making it potentially more widely applicable.



Work supported by Science Foundation Ireland under Grant Nos. 12/IA/1742 and 16/RI/3696. We acknowledge EU FP7 Grant Agreement No. 318941 under the project “Ultrafast Photonics-Processes and Interactions (UP-PI)” for travel funds. Pramod Pandey acknowledges support under the EU FP7-PEOPLE-2013-IIF Programme, Grant Agreement No. 628789. This work is associated with the FP7 EU COST Action MP1208 and the US National Science Foundation PIRE Grant No. 1243490.


  1. 1.
    T. Szorenyi, Z. Geretovszky, Thin solid films. 453–454, 431 (2004)CrossRefGoogle Scholar
  2. 2.
    P.K. Pandey, R.K. Thareja, Phys. Plasmas. 18, 033505 (2011)ADSCrossRefGoogle Scholar
  3. 3.
    I. Umezu, S. Yamamoto, A. Sugimura, Appl. Phys. A. 101, 133 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    C. Koral, A. De Giacomo, X. Mao, V. Zorba, R.E. Russo, Spectrochim. Acta B. 125, 11 (2016)ADSCrossRefGoogle Scholar
  5. 5.
    H. Luna, K.D. Kavanagh, J.T. Costello, J. Appl. Phys. 101, 033302 (2007)ADSCrossRefGoogle Scholar
  6. 6.
    I. Umezu, N. Sakamoto, H. Fukuoka, Y. Yokoyama, K. Nobuzawa, A. Sugimura, Appl. Phys. A. 110, 629 (2013)ADSCrossRefGoogle Scholar
  7. 7.
    A. Tselev, A. Gorbunov, W. Pompe, Rev. Sci. Instrum. 72, 2665 (2001)ADSCrossRefGoogle Scholar
  8. 8.
    M.D. Strikovsky, E.B. Klyuenkov, S.V. Gaponov, J. Schubert, C.A. Copetti, Appl. Phys. Lett. 63, 1146 (1993)ADSCrossRefGoogle Scholar
  9. 9.
    C. Sánchez Aké, R. Sanginés, H. de Castro, M. Sobral, Villagrán-Muniz, J. Appl. Phys. 100, 053305 (2006)ADSCrossRefGoogle Scholar
  10. 10.
    A. Tselev, A. Gorbunov, W. Pompe, Appl. Phys A. 69, 353 (1999)ADSCrossRefGoogle Scholar
  11. 11.
    E. György, G. Sauthier, A. Figueras, A. Giannoudakos, M. Kompitsas, I.N. Mihailescu, J Appl. Phys. 100, 114302 (2006)ADSCrossRefGoogle Scholar
  12. 12.
    A.A. Voevodin, M.A. Capano, A.J. Safriet, M.S. Donley, J.S. Zabinski, Appl. Phys. Lett. 69, 188 (1996)ADSCrossRefGoogle Scholar
  13. 13.
    S. Chen, Y. Guo, S. Chen, Z. Ge, H. Yang, J. Tang, Mater. Lett. 83, 154 (2012)CrossRefGoogle Scholar
  14. 14.
    P.V. Kamat, J. Phys. Chem. Lett. 2, 839 (2011)CrossRefGoogle Scholar
  15. 15.
    X. Chen, A. Selloni, Chem. Rev. 114, 9281 (2014)CrossRefGoogle Scholar
  16. 16.
    I.B. Gosbell, Am. J. Clin. Dermetol. 5, 239 (2004)CrossRefGoogle Scholar
  17. 17.
    H. Tong, S. Ouyang, Y. Bi, N. Umezawa, M. Oshikiri, J. Ye, Adv. Mater. 24, 229 (2012)CrossRefGoogle Scholar
  18. 18.
    S.Y. Dhumal, T.L. Daulton, J. Jiang, B. Khomami, P. Biswas, Appl. Catal. B. 86, 145 (2009)CrossRefGoogle Scholar
  19. 19.
    L.P. Li, J.J. Liu, Y.G. Su, G.S. Li, X.B. Chen, X.Q. Qiu, T.J. Yan, Nanotechnol. 20, 155706 (2009)ADSCrossRefGoogle Scholar
  20. 20.
    R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Science. 293, 269 (2001)CrossRefGoogle Scholar
  21. 21.
    W.Y. Choi, A. Termin, M.R. Hoffmann, J. Phys. Chem. 98, 13669 (1994)CrossRefGoogle Scholar
  22. 22.
    W. Li, Y. Wang, H. Lin, S.I. Shah, C.P. Huang, D.J. Doren, S.A. Rykov, J.G. Chen, M.A. Barteau, Appl. Phys. Lett. 83, 4143 (2003)ADSCrossRefGoogle Scholar
  23. 23.
    K.S. Rane, R. Mhalsiker, S. Yin, T. Sato, K. Cho, E. Dunbar, P. Biswas, J. Solid. State. Chem. 179, 3033 (2006)ADSCrossRefGoogle Scholar
  24. 24.
    P.K. Pandey, R.K. Thareja, J.T. Costello, Phys. Plasmas. 23, 103516 (2016)ADSCrossRefGoogle Scholar
  25. 25.
    S.H. Kim, S.-Y. Choi, J. Electroanal. Chem. 744, 45 (2015)CrossRefGoogle Scholar
  26. 26.
    M. Sahu, P. Biswas, Nanoscale Res. Lett. 6, 441 (2011)ADSCrossRefGoogle Scholar
  27. 27.
    K. Zhang, Z.-D. Meng, W.-C. Oh, Anal. Sci. Technol. 23, 225 (2010)CrossRefGoogle Scholar
  28. 28.
    B.D. Cullity, Elements of X-ray diffraction. (Addison Wesley Publishing Company Inc., Massachusetts, 2001)zbMATHGoogle Scholar
  29. 29.
    M.S. Nahar, S. Kagaya, J. Zhang, S. Kuroda, K. Hasegawa, Mat. Sci. Semicon. Proc. 12, 168 (2009)CrossRefGoogle Scholar
  30. 30.
    A.H. Dorian, C.C. Hanaor, Sorrell, J. Mater. Sci. 46, 855 (2011)ADSCrossRefGoogle Scholar
  31. 31.
    W. Li, A.I. Frenkel, J.C. Woicik, C. Ni, S.I. Shah, Phys. Rev. B. 72, 155315 (2005)ADSCrossRefGoogle Scholar
  32. 32.
    K. Nagaveni, M.S. Hegde, G. Madras, J. Phys. Chem. B. 108, 20204 (2004)CrossRefGoogle Scholar
  33. 33.
    I. Sang, M. Seok, S. Kim, T.S. Suh. J. Am. Ceram. Soc. 85, 1888 (2002)Google Scholar
  34. 34.
    W. Choi, A. Termin, M.R. Hoffmann, J. Phys. Chem. 98, 13669 (1994)CrossRefGoogle Scholar
  35. 35.
    S.H.M. Suhaimy, S.B.A. Hamid, C.W. Lai, M.R. Hasan, M.R. Johan, Catalysts. 6, 167 (2016)CrossRefGoogle Scholar
  36. 36.
    Y. Kanemitsu, M. Okano, L.Q. Phuong, Y. Yamada, ECS J. Solid State Sci. Technol. 7, R3102 (2018)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.National Centre for Plasma Science and Technology and School of Physical SciencesDublin City UniversityDublin 9Ireland
  2. 2.Centre for Lasers and Photonics and Photonics Sciences and Engineering ProgrammeIndian Institute of Technology KanpurKanpurIndia
  3. 3.Department of PhysicsIndian Institute of Technology KanpurKanpurIndia
  4. 4.Department of Applied ScienceMadan Mohan Malviya University of TechnologyGorakhpurIndia

Personalised recommendations