Skip to main content
Log in

Deposition of nanocomposite Cu–TiO2 using heterogeneous colliding plasmas

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The formation of CuTiO2 nanocomposites has been observed in an experiment in which laser plasma plumes of Cu and Ti collide and stagnate in an oxygen atmosphere. The inherent advantage of this technique lies in its simplicity and flexibility where laser, target composition and geometry along with ambient atmosphere are all controllable parameters through which the stoichiometry of the deposited nanocomposites may be selected. The experiment has been performed at three oxygen ambient pressures 10−4, 10−2, 100 mbar and we observe its effect on stoichiometry, and morphology of the deposited nanocomposites. Here, we show how the stoichiometry of deposited nanocomposites can be readily controlled by changing just one parameter, namely the ambient oxygen pressure. The different peaks of photoluminescence spectra \(\lambda =390{\text{ nm}}\;\left( {E=3.18{\text{ eV}}} \right)\) corresponding to the anatase phase of TiO2, along with the peaks at λ = 483 nm (E = 2.56 eV) and 582 nm (E = 2.13 eV) of deposited nanocomposites, shows the doping/blending effect on the band gaps which may potentially be of value in solar cell technology. The technique can, in principle, be extended to include nanocomposites of other materials making it potentially more widely applicable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. T. Szorenyi, Z. Geretovszky, Thin solid films. 453–454, 431 (2004)

    Article  Google Scholar 

  2. P.K. Pandey, R.K. Thareja, Phys. Plasmas. 18, 033505 (2011)

    Article  ADS  Google Scholar 

  3. I. Umezu, S. Yamamoto, A. Sugimura, Appl. Phys. A. 101, 133 (2010)

    Article  ADS  Google Scholar 

  4. C. Koral, A. De Giacomo, X. Mao, V. Zorba, R.E. Russo, Spectrochim. Acta B. 125, 11 (2016)

    Article  ADS  Google Scholar 

  5. H. Luna, K.D. Kavanagh, J.T. Costello, J. Appl. Phys. 101, 033302 (2007)

    Article  ADS  Google Scholar 

  6. I. Umezu, N. Sakamoto, H. Fukuoka, Y. Yokoyama, K. Nobuzawa, A. Sugimura, Appl. Phys. A. 110, 629 (2013)

    Article  ADS  Google Scholar 

  7. A. Tselev, A. Gorbunov, W. Pompe, Rev. Sci. Instrum. 72, 2665 (2001)

    Article  ADS  Google Scholar 

  8. M.D. Strikovsky, E.B. Klyuenkov, S.V. Gaponov, J. Schubert, C.A. Copetti, Appl. Phys. Lett. 63, 1146 (1993)

    Article  ADS  Google Scholar 

  9. C. Sánchez Aké, R. Sanginés, H. de Castro, M. Sobral, Villagrán-Muniz, J. Appl. Phys. 100, 053305 (2006)

    Article  ADS  Google Scholar 

  10. A. Tselev, A. Gorbunov, W. Pompe, Appl. Phys A. 69, 353 (1999)

    Article  ADS  Google Scholar 

  11. E. György, G. Sauthier, A. Figueras, A. Giannoudakos, M. Kompitsas, I.N. Mihailescu, J Appl. Phys. 100, 114302 (2006)

    Article  ADS  Google Scholar 

  12. A.A. Voevodin, M.A. Capano, A.J. Safriet, M.S. Donley, J.S. Zabinski, Appl. Phys. Lett. 69, 188 (1996)

    Article  ADS  Google Scholar 

  13. S. Chen, Y. Guo, S. Chen, Z. Ge, H. Yang, J. Tang, Mater. Lett. 83, 154 (2012)

    Article  Google Scholar 

  14. P.V. Kamat, J. Phys. Chem. Lett. 2, 839 (2011)

    Article  Google Scholar 

  15. X. Chen, A. Selloni, Chem. Rev. 114, 9281 (2014)

    Article  Google Scholar 

  16. I.B. Gosbell, Am. J. Clin. Dermetol. 5, 239 (2004)

    Article  Google Scholar 

  17. H. Tong, S. Ouyang, Y. Bi, N. Umezawa, M. Oshikiri, J. Ye, Adv. Mater. 24, 229 (2012)

    Article  Google Scholar 

  18. S.Y. Dhumal, T.L. Daulton, J. Jiang, B. Khomami, P. Biswas, Appl. Catal. B. 86, 145 (2009)

    Article  Google Scholar 

  19. L.P. Li, J.J. Liu, Y.G. Su, G.S. Li, X.B. Chen, X.Q. Qiu, T.J. Yan, Nanotechnol. 20, 155706 (2009)

    Article  ADS  Google Scholar 

  20. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Science. 293, 269 (2001)

    Article  Google Scholar 

  21. W.Y. Choi, A. Termin, M.R. Hoffmann, J. Phys. Chem. 98, 13669 (1994)

    Article  Google Scholar 

  22. W. Li, Y. Wang, H. Lin, S.I. Shah, C.P. Huang, D.J. Doren, S.A. Rykov, J.G. Chen, M.A. Barteau, Appl. Phys. Lett. 83, 4143 (2003)

    Article  ADS  Google Scholar 

  23. K.S. Rane, R. Mhalsiker, S. Yin, T. Sato, K. Cho, E. Dunbar, P. Biswas, J. Solid. State. Chem. 179, 3033 (2006)

    Article  ADS  Google Scholar 

  24. P.K. Pandey, R.K. Thareja, J.T. Costello, Phys. Plasmas. 23, 103516 (2016)

    Article  ADS  Google Scholar 

  25. S.H. Kim, S.-Y. Choi, J. Electroanal. Chem. 744, 45 (2015)

    Article  Google Scholar 

  26. M. Sahu, P. Biswas, Nanoscale Res. Lett. 6, 441 (2011)

    Article  ADS  Google Scholar 

  27. K. Zhang, Z.-D. Meng, W.-C. Oh, Anal. Sci. Technol. 23, 225 (2010)

    Article  Google Scholar 

  28. B.D. Cullity, Elements of X-ray diffraction. (Addison Wesley Publishing Company Inc., Massachusetts, 2001)

    MATH  Google Scholar 

  29. M.S. Nahar, S. Kagaya, J. Zhang, S. Kuroda, K. Hasegawa, Mat. Sci. Semicon. Proc. 12, 168 (2009)

    Article  Google Scholar 

  30. A.H. Dorian, C.C. Hanaor, Sorrell, J. Mater. Sci. 46, 855 (2011)

    Article  ADS  Google Scholar 

  31. W. Li, A.I. Frenkel, J.C. Woicik, C. Ni, S.I. Shah, Phys. Rev. B. 72, 155315 (2005)

    Article  ADS  Google Scholar 

  32. K. Nagaveni, M.S. Hegde, G. Madras, J. Phys. Chem. B. 108, 20204 (2004)

    Article  Google Scholar 

  33. I. Sang, M. Seok, S. Kim, T.S. Suh. J. Am. Ceram. Soc. 85, 1888 (2002)

    Google Scholar 

  34. W. Choi, A. Termin, M.R. Hoffmann, J. Phys. Chem. 98, 13669 (1994)

    Article  Google Scholar 

  35. S.H.M. Suhaimy, S.B.A. Hamid, C.W. Lai, M.R. Hasan, M.R. Johan, Catalysts. 6, 167 (2016)

    Article  Google Scholar 

  36. Y. Kanemitsu, M. Okano, L.Q. Phuong, Y. Yamada, ECS J. Solid State Sci. Technol. 7, R3102 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

Work supported by Science Foundation Ireland under Grant Nos. 12/IA/1742 and 16/RI/3696. We acknowledge EU FP7 Grant Agreement No. 318941 under the project “Ultrafast Photonics-Processes and Interactions (UP-PI)” for travel funds. Pramod Pandey acknowledges support under the EU FP7-PEOPLE-2013-IIF Programme, Grant Agreement No. 628789. This work is associated with the FP7 EU COST Action MP1208 and the US National Science Foundation PIRE Grant No. 1243490.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pramod K. Pandey.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandey, P.K., Thareja, R.K., Singh, R.P. et al. Deposition of nanocomposite Cu–TiO2 using heterogeneous colliding plasmas. Appl. Phys. B 124, 50 (2018). https://doi.org/10.1007/s00340-018-6919-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-018-6919-8

Navigation