Applied Physics B

, 124:51 | Cite as

Interband cascade laser-based ppbv-level mid-infrared methane detection using two digital lock-in amplifier schemes

  • Fang Song
  • Chuantao Zheng
  • Di Yu
  • Yanwen Zhou
  • Wanhong Yan
  • Weilin Ye
  • Yu Zhang
  • Yiding Wang
  • Frank K. Tittel
Article
  • 204 Downloads
Part of the following topical collections:
  1. Mid-infrared and THz Laser Sources and Applications

Abstract

A parts-per-billion in volume (ppbv) level mid-infrared methane (CH4) sensor system was demonstrated using second-harmonic wavelength modulation spectroscopy (2f-WMS). A 3291 nm interband cascade laser (ICL) and a multi-pass gas cell (MPGC) with a 16 m optical path length were adopted in the reported sensor system. Two digital lock-in amplifier (DLIA) schemes, a digital signal processor (DSP)-based DLIA and a LabVIEW-based DLIA, were used for harmonic signal extraction. A limit of detection (LoD) of ~ 13.07 ppbv with an averaging time of 2 s was achieved using the DSP-based DLIA and a LoD of ~ 5.84 ppbv was obtained using the LabVIEW-based DLIA with the same averaging time. A rise time of 0→2 parts-per-million in volume (ppmv) and fall time of 2→0 ppmv were observed. Outdoor atmospheric CH4 concentration measurements were carried out to evaluate the sensor performance using the two DLIA schemes.

Notes

Acknowledgements

The National Natural Science Foundation of China (Nos. 61627823, 61775079), National Key R&D Program of China (Nos. 2017YFB0402800, 2016YFD0700101, 2016YFC0303902), Key Science and Technology R&D program of Jilin Province, China (No. 20180201046GX), Industrial Innovation Program of Jilin Province, China (No. 2017C027), and the National Science Foundation (NSF) ERC MIRTHE award and Robert Welch Foundation (No. R4925U).

References

  1. 1.
    R.K. Pachauri, M. Allen, V. Barros, J. Broome, W. Cramer, R. Christ, J. Church, L. Clarke, Q. Dahe, P. Dasgupta, Climate change 2014: synthesis report: contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. J. Roman. Stud. 4(2), 85–88 (2015)Google Scholar
  2. 2.
    World Metrological Organization, The state of greenhouse gases in the atmosphere based on global observations through 2016. WMO-GAW Greenh. Gas Bul. 13, 1–8 (2017)Google Scholar
  3. 3.
    A.R. Brandt, G.A. Heath, E.A. Kort, F. O’Sullivan, G. Pétron, S.M. Jordaan, R. Harriss, Energy and environment: methane leaks from North American natural gas systems. Science 343(6172), 733–735 (2014)ADSCrossRefGoogle Scholar
  4. 4.
    R.A. Alvarez, S.W. Pacala, J.J. Winebrake, W.L. Chameides, S.P. Hamburg, Greater focus needed on methane leakage from natural gas infrastructure. Proc. Natl. Acad. Sci. USA 109(17), 6435–6440 (2012)ADSCrossRefGoogle Scholar
  5. 5.
    E.S.F. Berman, M. Fladeland, J. Liem, R. Kolyer, M.Gupta, Greenhouse gas analyzer for measurements of carbon dioxide, methane, and water vapor aboard an unmanned aerial vehicle. Sens. Actuators B 169(4), 128–135 (2012)CrossRefGoogle Scholar
  6. 6.
    Y. Cao, N.P. Sanchez, W. Jiang, R.J. Griffin, F. Xie, L.C. Hughes, C. Zah, F.K. Tittel, Simultaneous atmospheric nitrous oxide, methane and water vapor detection with a single continuous wave quantum cascade laser. Opt. Express. 23(3), 2121–2132 (2015)ADSCrossRefGoogle Scholar
  7. 7.
    Y. Yu, N.P. Sanchez, R. J.Griffin, F. K.Tittel, CW EC-QCL-based sensor for simultaneous detection of H2O, HDO, N2O and CH4 using multi-pass absorption spectroscopy. Opt. Express. 24(10), 10391–10401 (2016)ADSCrossRefGoogle Scholar
  8. 8.
    C.S. Goldenstein, I.A. Schultz, R.M. Spearrin, J.B. Jeffries, R.K. Hanson, Scanned wavelength modulation spectroscopy near 2.5 µm for H2O and temperature in a hydrocarbon-fueled scramjet combustor. Appl. Phys. B 116(3), 717–727 (2014)ADSCrossRefGoogle Scholar
  9. 9.
    C.S. Goldenstein, R.M. Spearrin, R.K. Hanson, Fiber-coupled diode-laser sensors for calibration-free stand-off measurements of gas temperature, pressure, and composition. Appl. Opt. 55(3), 479–484 (2016)ADSCrossRefGoogle Scholar
  10. 10.
    L.C. Philippe, R.K. Hanson, Laser diode wavelength-modulation spectroscopy for simultaneous measurement of temperature, pressure, and velocity in shock-heated oxygen flows. Appl. Opt. 32(30), 6090–6103 (1993)ADSCrossRefGoogle Scholar
  11. 11.
    J.T. Liu, G.B. Rieker, J.B. Jeffries, M.R. Gruber, C.D. Carter, T. Mathur, Near-infrared diode laser absorption diagnostic for temperature and water vapor in a scramjet combustor. Appl. Opt. 44(31), 6702–6711 (2005)ADSCrossRefGoogle Scholar
  12. 12.
    K. Sun, X. Chao, R. Sur, C.S. Goldenstein, J.B. Jeffries, R.K. Hanson, Analysis of calibration-free wavelength-scanned wavelength modulation spectroscopy for practical gas sensing using tunable diode lasers. Meas. Sci. Technol. 24(12), 1–12 (2013)Google Scholar
  13. 13.
    G.B. Rieker, J.B. Jeffries, R.K. Hanson, Calibration-free wavelength-modulation spectroscopy for measurements of gas temperature and concentration in harsh environments. Appl. Opt. 48(29), 5546–5560 (2009)ADSCrossRefGoogle Scholar
  14. 14.
    R. Sur, K. Sun, J.B. Jeffries, J.G. Socha, R.K. Hanson, Scanned-wavelength-modulation-spectroscopy sensor for CO, CO2, CH4, and H2O in a high-pressure engineering-scale transport-reactor coal gasifier. Fuel 150, 102–111 (2015)CrossRefGoogle Scholar
  15. 15.
    L. Dong, W.G. Ma, W.B. Yin, C.Y. Li, S.T. Jia, Experimental study on harmonic detection of methane by use of a digital lock-in amplifier. Spectrosc. Spectr. Anal. 25(3), 473–476 (2005)Google Scholar
  16. 16.
    L. Dong, Y.J. Yu, C.G. Li, S. So, F.K. Tittel, Ppb-level formaldehyde detection using a cw room-temperature interband cascade laser and a miniature dense pattern multipass gas cell. Opt. Express. 23(15), 19821 (2015)ADSCrossRefGoogle Scholar
  17. 17.
    C.T. Zheng, W.L. Ye, N.P. Sanchez, A.K. Gluszek, A.J. Hudzikowski, C.G. Li, L. Dong, J.G. Robert, F.K. Tittel, Infrared dual-gas CH4/C2H6 sensor using two continuous-wave interband cascade lasers. IEEE Photonics Technol. Lett. 28(21), 2351–2354 (2016)ADSCrossRefGoogle Scholar
  18. 18.
    W.L. Ye, C.G. Li, C.T. Zheng, N.P. Sanchez, A.K. Gluszek, A.J. Hudzikowski, L. Dong, R.J. Griffin, F.K. Tittel, Mid-infrared dual-gas sensor for simultaneous detection of methane and ethane using a single continuous-wave interband cascade laser. Opt. Express. 24(15), 16973–16985 (2016)ADSCrossRefGoogle Scholar
  19. 19.
    C.G. Li, C.T. Zheng, L. Dong, W.L. Ye, F.K. Tittel, Y.D. Wang, Ppb-level mid-infrared ethane detection based on three measurement schemes using a 3.34-µm continuous-wave interband cascade laser. Appl. Phys. B 122(7), 185 (2016)ADSCrossRefGoogle Scholar
  20. 20.
    C.T. Zheng, W.L. Ye, G.L. Li, X. Yu, C.X. Zhao, Z.W. Song, Y.D. Wang, Performance enhancement of a mid-infrared CH4 detection sensor by optimizing an asymmetric ellipsoid gas-cell and reducing voltage-fluctuation: theory, design and experiment. Sens. Actuators B 160(1), 389–398 (2011)CrossRefGoogle Scholar
  21. 21.
    B. Li, C.T. Zheng, H.F. Liu, Q.X. He, W.L. Ye, Y. Zhang, J.Q. Pan, Y.D. Wang, Development and measurement of a near-infrared CH4 detection system using 1.654 µm wavelength-modulated diode laser and open reflective gas sensing probe. Sens. Actuators B 225, 188–198 (2016)CrossRefGoogle Scholar
  22. 22.
    L.S. Rothman, I.E. Gordon, Y. Babikov, A. Barbe, D.C. Benner, P.F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L.R. Brown, A. Campargue, K. Chance, E.A. Cohen, L.H. Coudert, V.M. Devi, B.J. Drouin, A. Fayt, J.M. Flaud, R.R. Gamache, J.J. Harrison, J.M. Hartmann, C. Hill, J.T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R.J. Le Roy, G. Li, D.A. Long, O.M. Lyulin, C.J. Mackie, S.T. Massie, S. Mikhailenko, H.S.P. Müller, O.V. Naumenko, A.V. Nikitin, J. Orphalu, V. Perevalov, A. Perrin, E.R. Polovtseva, C. Richard, M.A.H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G.C. Toon, V.G. Tyuterev, G. Wagner, The Hitran 2012 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013)ADSCrossRefGoogle Scholar
  23. 23.
    H.I.T.R.A.N. The Database, https://www.cfa.harvard.edu/hitran/. Accessed 30 Oct 2017
  24. 24.
    A. Chighine, E. Fisher, D. Wilson, M. Lengden, W. Johnstone, H. Mccann, An FPGA-based lock-in detection system to enable chemical species tomography using TDLAS. IEEE International Conference on Imaging Systems and Techniques, pp. 1–5 (2015)Google Scholar
  25. 25.
    H.F. Liu, B. Li, Q.X. He, J.M. Dang, H.Y. Yu, C.T. Zheng, Y.D. Wang, Development of a digital orthogonal lock-in amplifier and its application in methane detection. Acta Photon. Sin. 45(4), 18–23 (2016) (Chinese)Google Scholar
  26. 26.
    K. Liu, T. Liu, J. Jiang, G.D. Peng, H. Zhang, D. Jia, Y. Wang, W. Jing, Y. Zhang, Investigation of wavelength modulation and wavelength sweep techniques in intracavity fiber laser for gas detection. J. Lightwave Technol. 29(1), 15–21 (2011)ADSCrossRefGoogle Scholar
  27. 27.
    J. Reid, D. Labrie, Second-harmonic detection with tunable diode lasers-comparison of experiment and theory. Appl. Phys. B 26(3), 203–210 (1981)ADSCrossRefGoogle Scholar
  28. 28.
    W. Ren, W.Z. Jiang, F.K. Tittel, Single-QCL-based absorption sensor for simultaneous trace-gas detection of CH4 and N2O. Appl. Phys. B 117(1), 245–251 (2014)ADSCrossRefGoogle Scholar
  29. 29.
    K. Liu, L. Wang, T. Tan, G.S. Wang, W.J. Zhang, W.D. Chen, X.M. Gao, Highly sensitive detection of methane by near-infrared laser absorption spectroscopy using a compact dense-pattern multipass cell. Sens. Actuators B 220, 1000–1005 (2015)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Fang Song
    • 1
  • Chuantao Zheng
    • 1
    • 2
  • Di Yu
    • 1
  • Yanwen Zhou
    • 1
  • Wanhong Yan
    • 1
  • Weilin Ye
    • 2
    • 3
  • Yu Zhang
    • 1
  • Yiding Wang
    • 1
  • Frank K. Tittel
    • 2
  1. 1.State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and EngineeringJilin UniversityChangchunChina
  2. 2.Department of Electrical and Computer EngineeringRice UniversityHoustonUSA
  3. 3.College of EngineeringShantou UniversityShantouChina

Personalised recommendations