Applied Physics B

, 124:49 | Cite as

Spectroscopic analysis of high protein nigella seeds (Kalonji) using laser-induced breakdown spectroscopy and inductively coupled plasma/optical emission spectroscopy

  • Imran Rehan
  • M. Zubair Khan
  • Irfan Ali
  • Kamran Rehan
  • Sabiha Sultana
  • Sher Shah


The spectroscopic analysis of high protein nigella seeds (also called Kalonji) was performed using pulsed nanosecond laser-induced breakdown spectroscopy (LIBS) at 532 nm. The emission spectrum of Kalonji recorded with an LIBS spectrometer exposed the presence of various elements like Al, B, Ba, Ca, Cr, K, P, Mg, Mn, Na, Ni, S, Si, Cu, Fe, Ti, Sn, Sr, and Zn. The plasma parameters (electron temperature and electron density) were estimated using Ca–I spectral lines and their behavior were studied against laser irradiance. The electron temperature and electron density was observed to show an increasing trend in the range of 5802–7849 K, and (1.2–3.9) × 1017 cm− 3, respectively, in the studied irradiance range of (1.2–12.6) × 109 W/cm2. Furthermore, the effect of varying laser energy on the integrated signal intensities was also studied. The quantitative analysis of the detected elements was performed via the calibration curves drawn for all the observed elements through typical samples made in the known concentration in the Kalonji matrix, and by setting the concentration of P as the calibration. The validity of our LIBS findings was verified via comparison of the results with the concentration of every element find in Kalonji using the standard analytical tool like ICP/OES. The results acquired using LIBS and ICP/OES were found in fine harmony. Moreover, limit of detection was measured for toxic metals only.


  1. 1.
    J.D. Bewley, M. Black, P. Halmer, The Encyclopedia of Seeds: Science, Technology And Uses (CABI, 2006)Google Scholar
  2. 2.
    M.B. Atta, Food Chem. 83, 63 (2003)CrossRefGoogle Scholar
  3. 3.
    M.S. Butt, M.T. Sultan, Crit. Rev. Food Sci. Nutr. 50, 654 (2010)CrossRefGoogle Scholar
  4. 4.
    M.S. Al-Jassir, Food Chem. 45, 239 (1992)CrossRefGoogle Scholar
  5. 5.
    V. Babayan, D. Koottungal, G. Halaby, J. Food Sci. 43, 1314 (1978)CrossRefGoogle Scholar
  6. 6.
    R. Agarwal, M. Kharya, R. Shrivastava, Indian J Exp Biol. 17, 1264 (1979)Google Scholar
  7. 7.
    A. AI-Attas, Arab. J. Nucl. Sci. Appl. 42, 59 (2009)Google Scholar
  8. 8.
    M.F. Ramadan, Int. J. Food Sci. Technol. 42, 1208 (2007)CrossRefGoogle Scholar
  9. 9.
    S. Khaled, M. Mouzai, A. Ararem, L. Hamidatou, B. Zouranen, J. Radioanal. Nucl. Chem. 281, 87 (2009)CrossRefGoogle Scholar
  10. 10.
    Ş. Tokalıoğlu, Food Chem. 134, 2504 (2012)CrossRefGoogle Scholar
  11. 11.
    M.A. Ali, M.A. Sayeed, M.S. Alam, M.S. Yeasmin, A.M. Khan, I.I. Muhamad, Bull. Chem. Soc. Ethiop. 26 (2012)Google Scholar
  12. 12.
    K.T. El Araqi, J. Gilot-Delhalle, I. Roelandts, G. Weber, R. Deltova, J. Moutschen, Environ. Exp. Bot. 38, 87 (1997)CrossRefGoogle Scholar
  13. 13.
    L.J. Radziemski, Spectrochim. Acta Part B 57, 1109 (2002)ADSCrossRefGoogle Scholar
  14. 14.
    V. Babushok, F. DeLucia, J. Gottfried, C. Munson, A. Miziolek, Spectrochim. Acta Part B 61, 999 (2006)ADSCrossRefGoogle Scholar
  15. 15.
    J.P. Singh, S.N. Thakur, Laser-Induced Breakdown Spectroscopy (Elsevier, Amsterdam, 2007)Google Scholar
  16. 16.
    R.A. Multari, D.A. Cremers, J.A.M. Dupre, J.E. Gustafson, J. Agric. Food Chem. 61, 8687 (2013)CrossRefGoogle Scholar
  17. 17.
    I. Rehan, K. Rehan, S. Sultana, M.O. ul Haq, M.Z.K. Niazi, R. Muhammad, Eur. Phys. J. Appl. Phys. 73, 10701 (2016)ADSCrossRefGoogle Scholar
  18. 18.
    A. Ali, M. Khan, I. Rehan, K. Rehan, R. Muhammad, J. Spectrosc. 2016 (2016)Google Scholar
  19. 19.
    J.E. Sansonetti, W.C. Martin, J. Phys. Chem. Ref. Data. 34, 1559 (2005)ADSCrossRefGoogle Scholar
  20. 20.
    M. Qian, C. Ren, D. Wang, J. Zhang, G. Wei, J. Appl. Phys. 107, 063303 (2010)ADSCrossRefGoogle Scholar
  21. 21.
    A.W. Miziolek, V. Palleschi, I. Schechter, Laser Induced Breakdown Spectroscopy (Cambridge University Press, Cambridge, 2006)Google Scholar
  22. 22.
    D.A. Cremers, F.Y. Yueh, J.P. Singh, H. Zhang, Encyclopedia of Analytical Chemistry (Wiley, Hoboken, 2006)Google Scholar
  23. 23.
    H. Griem, Principles of Plasma Spectroscopy (Cambridge University Press, Cambridge, 1997)CrossRefGoogle Scholar
  24. 24.
    H.R. Griem, Plasma Spectroscopy (McGraw-Hill, New York, 1964)Google Scholar
  25. 25.
    L.J. Radziemski, T.R. Loree, D.A. Cremers, N.M. Hoffman, Anal. Chem. 55, 1246 (1983)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Imran Rehan
    • 1
  • M. Zubair Khan
    • 1
  • Irfan Ali
    • 2
  • Kamran Rehan
    • 1
    • 3
    • 4
  • Sabiha Sultana
    • 5
  • Sher Shah
    • 1
  1. 1.Department of Applied PhysicsFederal Urdu University of Arts, Science and TechnologyIslamabadPakistan
  2. 2.Department of PhysicsUniversity of Engineering and TechnologyLahorePakistan
  3. 3.State Key Laboratory of Magnetic Resonance and Atomic & Molecular PhysicsWuhan Institute of Physics and Mathematics, UCASWuhanPeople’s Republic of China
  4. 4.School of PhysicsUniversity of Chinese Academy of SciencesBeijingPeople’s Republic of China
  5. 5.Department of ChemistryIslamia College UniversityPeshawarPakistan

Personalised recommendations