Skip to main content
Log in

Modeling of dispersion engineered chalcogenide rib waveguide for ultraflat mid-infrared supercontinuum generation in all-normal dispersion regime

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

A rigorous numerical investigation has been carried out through dispersion engineering of chalcogenide rib waveguide for near-infrared to mid-infrared ultraflat broadband supercontinuum generation in all-normal group-velocity dispersion regime. We propose a novel design of a 1-cm-long air-clad rib waveguide which is made from \(\text {Ge}_{11.5}\text {As}_{24}\text {Se}_{64.5}\) chalcogenide glass as the core with either silica or \(\text {Ge}_{11.5}\text {As}_{24}\text {S}_{64.5}\) chalcogenide glass as a lower cladding separately. A broadband ultraflat supercontinuum spanning from 1300 to 1900 nm could be generated when pumped at 1.55 \(\upmu \text {m}\) with a low input peak power of 100 W. Shifting the pump to 2 \(\upmu \text {m}\), the supercontinuum spectra extended in the mid-infrared region up to 3400 nm with a moderate-input peak power of 500 W. To achieve further extension in mid-infrared, we excite our optimized rib waveguide in both the anomalous and all-normal dispersion pumping regions at 3.1 \(\upmu \text {m}\) with a largest input peak power of 3 kW. In the case of anomalous dispersion region pumping, numerical analysis shows that supercontinuum spectrum can be extended in the mid-infrared up to 10 \(\upmu \text {m}\), although this contains high spectral amplitude fluctuations over the entire bandwidth which limits the supercontinuum sources in the field of high precision measurement applications. On the other hand, by optimizing a rib waveguide geometry for pumping in all-normal dispersion region, we are able to generate a smooth and flat-top coherent supercontinuum spectrum with a moderate bandwidth spanning the wavelength range 2–5.5 \(\upmu \text {m}\) with less than 5 dB spectral fluctuation over the entire output bandwidth. Our proposed design is highly suitable for making on-chip SC light sources for a variety of applications such as biomedical imaging, and environmental and industrial sensing in the mid-infrared region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J.M. Dudley, G. Genty, S. Coen, Rev. Mod. Phys. 78(4), 1135–1184 (2006)

    Article  ADS  Google Scholar 

  2. C. Wei, X. Zhu, R.A. Norwood, F. Seng, N. Peyghambarian, Opt. Express 21(24), 29488–29504 (2013)

    Article  ADS  Google Scholar 

  3. A. Di Tommaso, M. De Sario, L. Mescia, F. Prudenzano, Opt. Eng. 51(3), 035003-1–35003-7 (2012)

    Article  ADS  Google Scholar 

  4. G.P. Agrawal, Nonlinear Fiber Optics, 5th edn. (Academic, San Diego, 2013)

    MATH  Google Scholar 

  5. P. Falk, M.H. Frosz, O. Bang, Opt. Express 13(19), 7535–7540 (2005)

    Article  ADS  Google Scholar 

  6. G. Chang, T.B. Norris, H.G. Winful, Opt. Lett. 28, 546–548 (2003)

    Article  ADS  Google Scholar 

  7. A. Al-Kadry, L. Li, M.E. Amraoui, T. North, Y. Messaddeq, M. Rochette, Opt. Lett. 40(20), 4687–4690 (2015)

    Article  ADS  Google Scholar 

  8. A.M. Heidt, J. Opt. Soc. Am. B 27(3), 550–559 (2010)

    Article  ADS  Google Scholar 

  9. A.M. Heidt, A. Hartung, G.W. Bosman, P. Krok, E.G. Rohwer, H. Schwoerer, H. Bartelt, Opt. Express 19(4), 3775–3778 (2011)

    Article  ADS  Google Scholar 

  10. C. Finot, B. Kibler, L. Provost, S. Wabnitz, J. Opt. Soc. Am. B 25(11), 1938–1337 (2008)

    Article  ADS  Google Scholar 

  11. A. Hartung, A.M. Heidt, H. Bartelt, Opt. Express 19(8), 7742–7749 (2011)

    Article  ADS  Google Scholar 

  12. B. Siwicki, M. Klimczak, R. Stepien, R. Buczynski, Opt. Fiber Technol. 25, 64–71 (2015)

    Article  ADS  Google Scholar 

  13. G. Stepniewski, M. Klimczak, H. Bookey, B. Siwicki, D. Pysz, R. Stepien, A.K. Kar, A.J. Waddie, M.R. Taghizadeh, R. Buczynski, Laser Phys. Lett. 11, 055103 (2014)

    Article  ADS  Google Scholar 

  14. L.E. Hooper, P.J. Mosley, A.C. Muir, W.J. Wadsworth, J.C. Knight, Opt. Express 19(6), 4902–4907 (2011)

    Article  ADS  Google Scholar 

  15. L. Liu, T. Cheng, K. Nagasaka, H. Tong, G. Qin, T. Suzuki, Y. Ohishi, Opt. Lett. 41(2), 392–395 (2016)

    Article  ADS  Google Scholar 

  16. Z. Guo, J. Yuan, C. Yu, X. Sang, K. Wang, B. Yan, L. Li, S. Kang, X. Kang, Prog. Elec. Res. 48, 67–76 (2016)

    Google Scholar 

  17. X. Gai, S. Madden, D.Y. Choi, D. Bulla, B. Luther-Davies, Opt. Express 18(18), 18866–18874 (2010)

    Article  ADS  Google Scholar 

  18. M.R. Karim, B.M.A. Rahman, Opt. Quant. Electron. 48(3), 174 (2016)

    Article  Google Scholar 

  19. X. Gai, T. Han, A. Prasad, S. Madden, D.Y. Choi, R. Wang, D. Bulla, B. Luther-Davies, Opt. Express 18(25), 26635–26646 (2010)

    Article  ADS  Google Scholar 

  20. B.J. Eggleton, B. Luther-Davies, K. Richardson, Nat. Photon. 5, 141–148 (2011)

    Article  ADS  Google Scholar 

  21. U. Møller, Y. Yu, I. Kubat, C.R. Petersen, X. Gai, L. Brilland, D. Mechin, C. Caillaud, J. Troles, B. Luther-Davies, O. Bang, Opt. Express 23(3), 3282–3291 (2015)

    Article  ADS  Google Scholar 

  22. I. Kubat, C.S. Agger, U. Moller, A.B. Seddon, Z. Tang, S. Sujecki, T.M. Benson, D. Furniss, S. Lamarini, K. Scholle, P. Fuhrberg, B. Napier, M. Farries, J. Ward, P.M. Moselund, O. Bang, Opt. Express 22(16), 19169–19182 (2014)

    Article  ADS  Google Scholar 

  23. C.R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, M. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, O. Bang, Nat. Photon. 8, 830–834 (2014)

    Article  ADS  Google Scholar 

  24. Y. Yu, B. Zhang, X. Gai, C. Zhai, S. Qi, W. Guo, Z. Yang, R. Wang, D. Choi, S. Madden, B. Luther-Davies, Opt. Lett. 40, 1081–1084 (2015)

    Article  ADS  Google Scholar 

  25. M.R. Karim, B.M.A. Rahman, G.P. Agrawal, Opt. Express 23(5), 6903–6914 (2015)

    Article  ADS  Google Scholar 

  26. J. Fatome, C. Fortier, T.N. Nguyen, T. Chartier, F. Smektala, K. Messaad, B. Kibler, S. Pitois, G. Gadret, C. Finot, J. Troles, F. Desevedavy, P. Houizot, G. Renversez, L. Brilland, N. Traynor, J. Lightwave Technol. 27(11), 1707–1715 (2009)

    Article  ADS  Google Scholar 

  27. X. Gai, D. Choi, S. Madden, Z. Yang, R. Wang, B. Luther-Devies, Opt. Lett. 37(18), 3870–3872 (2012)

    Article  ADS  Google Scholar 

  28. Y. Yu, X. Gai, T. Wang, P. Ma, R. Wang, Z. Yang, D. Choi, S. Madden, B. Luther-Davies, Opt. Mater. Express 3(8), 1075–1086 (2013)

    Article  Google Scholar 

  29. Y. Yu, B. Zhang, X. Gai, P. Ma, D. Choi, Z. Yang, R. Wang, S. Debbarma, S. J. Madden, B. Luther-Davies, Laser Photon. Rev. 8(5), 792–798 (2014)

  30. Y. Yu, X. Gai, P. Ma, K. Vu, Z. Yang, R. Wang, D. Choi, S. Madden, B. Luther-Davies, Opt. Lett. 41(5), 958–961 (2016)

    Article  ADS  Google Scholar 

  31. P. Ma, D.Y. Choi, Y. Yu, X. Gai, Z. Yang, S. Debbarma, S. Madden, B. Luther-Davies, Opt. Express 21(24), 29927–29937 (2013)

    Article  ADS  Google Scholar 

  32. B.M.A. Rahman, J.B. Davies, J. Lightwave Technol. 2, 682–688 (1984)

    Article  ADS  Google Scholar 

  33. T. Wang, X. Gai, W. Wei, R. Wang, Z. Yang, X. Shen, S. Madden, B. Luther-Davies, Opt. Mater. Express 4(5), 1011–1022 (2014)

    Article  Google Scholar 

  34. X. Gu, M. Kimmel, A.P. Shreenath, R. Trebino, J.M. Dudley, S. Coen, R.S. Windeler, Opt. Express 11(21), 2697–2703 (2003)

    Article  ADS  Google Scholar 

  35. M.R. Karim, B.M.A. Rahman, G.P. Agrawal, Opt. Express 22(25), 31029–31040 (2014)

    Article  ADS  Google Scholar 

  36. Y. Tang, L.G. Wright, K. Charan, T. Wang, C. Xu, F.W. Wise, Optica 3, 948–951 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

Funding for this research was provided by the Ministry of Higher Education (MOHE) under the Grants GA010-2014 (ULUNG) and the University of Malaya under the Grants RP029A-15 AFR, RP029B-15 AFR and RU001-2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Ahmad.

Additional information

This article is part of the topical collection “Mid-infrared and THz Laser Sources and Applications” guest edited by Wei Ren, Paolo De Natale and Gerard Wysocki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, H., Karim, M.R. & Rahman, B.M.A. Modeling of dispersion engineered chalcogenide rib waveguide for ultraflat mid-infrared supercontinuum generation in all-normal dispersion regime. Appl. Phys. B 124, 47 (2018). https://doi.org/10.1007/s00340-018-6914-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-018-6914-0

Navigation