Advertisement

Applied Physics B

, 124:47 | Cite as

Modeling of dispersion engineered chalcogenide rib waveguide for ultraflat mid-infrared supercontinuum generation in all-normal dispersion regime

  • H. Ahmad
  • M. R. Karim
  • B. M. A. Rahman
Article
  • 248 Downloads
Part of the following topical collections:
  1. Mid-infrared and THz Laser Sources and Applications

Abstract

A rigorous numerical investigation has been carried out through dispersion engineering of chalcogenide rib waveguide for near-infrared to mid-infrared ultraflat broadband supercontinuum generation in all-normal group-velocity dispersion regime. We propose a novel design of a 1-cm-long air-clad rib waveguide which is made from \(\text {Ge}_{11.5}\text {As}_{24}\text {Se}_{64.5}\) chalcogenide glass as the core with either silica or \(\text {Ge}_{11.5}\text {As}_{24}\text {S}_{64.5}\) chalcogenide glass as a lower cladding separately. A broadband ultraflat supercontinuum spanning from 1300 to 1900 nm could be generated when pumped at 1.55 \(\upmu \text {m}\) with a low input peak power of 100 W. Shifting the pump to 2 \(\upmu \text {m}\), the supercontinuum spectra extended in the mid-infrared region up to 3400 nm with a moderate-input peak power of 500 W. To achieve further extension in mid-infrared, we excite our optimized rib waveguide in both the anomalous and all-normal dispersion pumping regions at 3.1 \(\upmu \text {m}\) with a largest input peak power of 3 kW. In the case of anomalous dispersion region pumping, numerical analysis shows that supercontinuum spectrum can be extended in the mid-infrared up to 10 \(\upmu \text {m}\), although this contains high spectral amplitude fluctuations over the entire bandwidth which limits the supercontinuum sources in the field of high precision measurement applications. On the other hand, by optimizing a rib waveguide geometry for pumping in all-normal dispersion region, we are able to generate a smooth and flat-top coherent supercontinuum spectrum with a moderate bandwidth spanning the wavelength range 2–5.5 \(\upmu \text {m}\) with less than 5 dB spectral fluctuation over the entire output bandwidth. Our proposed design is highly suitable for making on-chip SC light sources for a variety of applications such as biomedical imaging, and environmental and industrial sensing in the mid-infrared region.

Notes

Acknowledgements

Funding for this research was provided by the Ministry of Higher Education (MOHE) under the Grants GA010-2014 (ULUNG) and the University of Malaya under the Grants RP029A-15 AFR, RP029B-15 AFR and RU001-2017.

References

  1. 1.
    J.M. Dudley, G. Genty, S. Coen, Rev. Mod. Phys. 78(4), 1135–1184 (2006)ADSCrossRefGoogle Scholar
  2. 2.
    C. Wei, X. Zhu, R.A. Norwood, F. Seng, N. Peyghambarian, Opt. Express 21(24), 29488–29504 (2013)ADSCrossRefGoogle Scholar
  3. 3.
    A. Di Tommaso, M. De Sario, L. Mescia, F. Prudenzano, Opt. Eng. 51(3), 035003-1–35003-7 (2012)ADSCrossRefGoogle Scholar
  4. 4.
    G.P. Agrawal, Nonlinear Fiber Optics, 5th edn. (Academic, San Diego, 2013)zbMATHGoogle Scholar
  5. 5.
    P. Falk, M.H. Frosz, O. Bang, Opt. Express 13(19), 7535–7540 (2005)ADSCrossRefGoogle Scholar
  6. 6.
    G. Chang, T.B. Norris, H.G. Winful, Opt. Lett. 28, 546–548 (2003)ADSCrossRefGoogle Scholar
  7. 7.
    A. Al-Kadry, L. Li, M.E. Amraoui, T. North, Y. Messaddeq, M. Rochette, Opt. Lett. 40(20), 4687–4690 (2015)ADSCrossRefGoogle Scholar
  8. 8.
    A.M. Heidt, J. Opt. Soc. Am. B 27(3), 550–559 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    A.M. Heidt, A. Hartung, G.W. Bosman, P. Krok, E.G. Rohwer, H. Schwoerer, H. Bartelt, Opt. Express 19(4), 3775–3778 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    C. Finot, B. Kibler, L. Provost, S. Wabnitz, J. Opt. Soc. Am. B 25(11), 1938–1337 (2008)ADSCrossRefGoogle Scholar
  11. 11.
    A. Hartung, A.M. Heidt, H. Bartelt, Opt. Express 19(8), 7742–7749 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    B. Siwicki, M. Klimczak, R. Stepien, R. Buczynski, Opt. Fiber Technol. 25, 64–71 (2015)ADSCrossRefGoogle Scholar
  13. 13.
    G. Stepniewski, M. Klimczak, H. Bookey, B. Siwicki, D. Pysz, R. Stepien, A.K. Kar, A.J. Waddie, M.R. Taghizadeh, R. Buczynski, Laser Phys. Lett. 11, 055103 (2014)ADSCrossRefGoogle Scholar
  14. 14.
    L.E. Hooper, P.J. Mosley, A.C. Muir, W.J. Wadsworth, J.C. Knight, Opt. Express 19(6), 4902–4907 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    L. Liu, T. Cheng, K. Nagasaka, H. Tong, G. Qin, T. Suzuki, Y. Ohishi, Opt. Lett. 41(2), 392–395 (2016)ADSCrossRefGoogle Scholar
  16. 16.
    Z. Guo, J. Yuan, C. Yu, X. Sang, K. Wang, B. Yan, L. Li, S. Kang, X. Kang, Prog. Elec. Res. 48, 67–76 (2016)Google Scholar
  17. 17.
    X. Gai, S. Madden, D.Y. Choi, D. Bulla, B. Luther-Davies, Opt. Express 18(18), 18866–18874 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    M.R. Karim, B.M.A. Rahman, Opt. Quant. Electron. 48(3), 174 (2016)CrossRefGoogle Scholar
  19. 19.
    X. Gai, T. Han, A. Prasad, S. Madden, D.Y. Choi, R. Wang, D. Bulla, B. Luther-Davies, Opt. Express 18(25), 26635–26646 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    B.J. Eggleton, B. Luther-Davies, K. Richardson, Nat. Photon. 5, 141–148 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    U. Møller, Y. Yu, I. Kubat, C.R. Petersen, X. Gai, L. Brilland, D. Mechin, C. Caillaud, J. Troles, B. Luther-Davies, O. Bang, Opt. Express 23(3), 3282–3291 (2015)ADSCrossRefGoogle Scholar
  22. 22.
    I. Kubat, C.S. Agger, U. Moller, A.B. Seddon, Z. Tang, S. Sujecki, T.M. Benson, D. Furniss, S. Lamarini, K. Scholle, P. Fuhrberg, B. Napier, M. Farries, J. Ward, P.M. Moselund, O. Bang, Opt. Express 22(16), 19169–19182 (2014)ADSCrossRefGoogle Scholar
  23. 23.
    C.R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, M. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, O. Bang, Nat. Photon. 8, 830–834 (2014)ADSCrossRefGoogle Scholar
  24. 24.
    Y. Yu, B. Zhang, X. Gai, C. Zhai, S. Qi, W. Guo, Z. Yang, R. Wang, D. Choi, S. Madden, B. Luther-Davies, Opt. Lett. 40, 1081–1084 (2015)ADSCrossRefGoogle Scholar
  25. 25.
    M.R. Karim, B.M.A. Rahman, G.P. Agrawal, Opt. Express 23(5), 6903–6914 (2015)ADSCrossRefGoogle Scholar
  26. 26.
    J. Fatome, C. Fortier, T.N. Nguyen, T. Chartier, F. Smektala, K. Messaad, B. Kibler, S. Pitois, G. Gadret, C. Finot, J. Troles, F. Desevedavy, P. Houizot, G. Renversez, L. Brilland, N. Traynor, J. Lightwave Technol. 27(11), 1707–1715 (2009)ADSCrossRefGoogle Scholar
  27. 27.
    X. Gai, D. Choi, S. Madden, Z. Yang, R. Wang, B. Luther-Devies, Opt. Lett. 37(18), 3870–3872 (2012)ADSCrossRefGoogle Scholar
  28. 28.
    Y. Yu, X. Gai, T. Wang, P. Ma, R. Wang, Z. Yang, D. Choi, S. Madden, B. Luther-Davies, Opt. Mater. Express 3(8), 1075–1086 (2013)CrossRefGoogle Scholar
  29. 29.
    Y. Yu, B. Zhang, X. Gai, P. Ma, D. Choi, Z. Yang, R. Wang, S. Debbarma, S. J. Madden, B. Luther-Davies, Laser Photon. Rev. 8(5), 792–798 (2014)Google Scholar
  30. 30.
    Y. Yu, X. Gai, P. Ma, K. Vu, Z. Yang, R. Wang, D. Choi, S. Madden, B. Luther-Davies, Opt. Lett. 41(5), 958–961 (2016)ADSCrossRefGoogle Scholar
  31. 31.
    P. Ma, D.Y. Choi, Y. Yu, X. Gai, Z. Yang, S. Debbarma, S. Madden, B. Luther-Davies, Opt. Express 21(24), 29927–29937 (2013)ADSCrossRefGoogle Scholar
  32. 32.
    B.M.A. Rahman, J.B. Davies, J. Lightwave Technol. 2, 682–688 (1984)ADSCrossRefGoogle Scholar
  33. 33.
    T. Wang, X. Gai, W. Wei, R. Wang, Z. Yang, X. Shen, S. Madden, B. Luther-Davies, Opt. Mater. Express 4(5), 1011–1022 (2014)CrossRefGoogle Scholar
  34. 34.
    X. Gu, M. Kimmel, A.P. Shreenath, R. Trebino, J.M. Dudley, S. Coen, R.S. Windeler, Opt. Express 11(21), 2697–2703 (2003)ADSCrossRefGoogle Scholar
  35. 35.
    M.R. Karim, B.M.A. Rahman, G.P. Agrawal, Opt. Express 22(25), 31029–31040 (2014)ADSCrossRefGoogle Scholar
  36. 36.
    Y. Tang, L.G. Wright, K. Charan, T. Wang, C. Xu, F.W. Wise, Optica 3, 948–951 (2016)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Photonics Research CentreUniversity of MalayaKuala LumpurMalaysia
  2. 2.Department of Physics, Faculty of Science and TechnologyAirlangga UniversitySurabayaIndonesia
  3. 3.Department of Electrical and Electronic EngineeringCity University of LondonLondonUK

Personalised recommendations