Applied Physics B

, 124:45 | Cite as

Detecting the propagation effect of terahertz wave inside the two-color femtosecond laser filament in the air

  • J. Zhao
  • X. Zhang
  • S. Li
  • C. Liu
  • Y. Chen
  • Y. Peng
  • Y. Zhu


In this work, to decide the existence of terahertz (THz) wave propagation effect, THz pulses emitted from a blocked two-color femtosecond laser filament with variable length were recorded by a standard electric–optic sampling setup. The phenomenon of temporal advance of the THz waveform’s peak with the increasing filament length has been observed. Together with another method of knife-edge measurement which aims at directly retrieving the THz beam diameter, both the experimental approaches have efficiently indicated the same filament range within which THz wave propagated inside the plasma column. At last, a preliminary two-dimensional near-field scanning imaging of the THz spot inside the cross section of the filament has been suggested as the third way to determine the issue of THz wave propagation effect.



National Key R&D Program of China (2017YFC0821300), National Natural Science Foundation of China (11704252, 11574160, 61722111), National Program on Key Basic Research Project of China (973 Program) (2014CB339802, 2014CB339806), the Major National Development Project of Scientific Instrument and Equipment (2017YFF0106300, 2016YFF0100503), the Key Scientific and Technological Project of Science and Technology Commission of Shanghai Municipality (15DZ0500102), Shanghai leading talent (2016-019), and Young Yangtse Rive Scholar (Q2016212).


  1. 1.
    A Redo-Sanchez, X.C. Zhang, IEEE J. Sel. Top. Quant. 14, 260 (2008)CrossRefGoogle Scholar
  2. 2.
    M.F. Kimmitt, J. Biol. Phys. 29, 77 (2003)CrossRefGoogle Scholar
  3. 3.
    M.C. Hoffmann, J.A. Fülöp, J. Phys. D Appl. Phys. 44, 083001 (2011)ADSCrossRefGoogle Scholar
  4. 4.
    M. Tonouchi, Nat. Photonics. 1, 97 (2007)ADSCrossRefGoogle Scholar
  5. 5.
    V.L. Bratman, A.G. Litvak, E.V. Suvorov, Phys.-Usp. 54, 837 (2011)ADSCrossRefGoogle Scholar
  6. 6.
    H.G. Roskos, M.D. Thomson, M. Kreß, A.T. Löffler, Laser Photonics Rev. 1, 349 (2007)CrossRefGoogle Scholar
  7. 7.
    C. D’Amico, A. Houard, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, V.T. Tikhonchuk, Phys. Rev. Lett. 98, 235002 (2007)ADSCrossRefGoogle Scholar
  8. 8.
    T.J. Wang, S. Yuan, Y. Chen, J.F. Daigle, C. Marceau, F. Théberge, M. Châteauneuf, J. Dubois, S.L. Chin, Appl. Phys. Lett. 97, 111108 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    J. Zhao, Y. Zhang, Z. Wang, W. Chu, B. Zeng, W. Liu, Y. Cheng, Z. Xu, Laser Phys. Lett. 11, 095302 (2014)ADSCrossRefGoogle Scholar
  10. 10.
    J. Zhao, W. Chu, L. Guo, Z. Wang, J. Yang, W. Liu, Y. Cheng, Z. Xu, Sci. Rep. 4, 3880 (2014)ADSCrossRefGoogle Scholar
  11. 11.
    J. Zhao, W. Chu, Z. Wang, Y. Peng, C. Gong, L. Lin, Y. Zhu, W. Liu, Y. Cheng, S. Zhuang, Z. Xu, ACS Photonics. 3, 2338 (2016)CrossRefGoogle Scholar
  12. 12.
    J. Zhao, L. Guo, W. Chu, B. Zeng, H. Gao, Y. Cheng, W. Liu, Opt. Lett. 40, 3838 (2015)ADSCrossRefGoogle Scholar
  13. 13.
    Q. Wu, X.C. Zhang, Appl. Phys. Lett. 67, 3523 (1995)ADSCrossRefGoogle Scholar
  14. 14.
    A. Nahata, D.H. Auston, T.F. Heinz, C. Wu, Appl. Phys. Lett. 68, 150 (1996)ADSCrossRefGoogle Scholar
  15. 15.
    P.U. Jepsen, C. Winnewisser, M. Schall, V. Schyja, S.R. Keiding, H. Helm, Phys. Rev. E. 53, R3052 (1996)ADSCrossRefGoogle Scholar
  16. 16.
    L.J. Wang, A. Kuzmich, A. Dogariu, Nature. 406, 277 (2000)ADSCrossRefGoogle Scholar
  17. 17.
    K. Wynne, D.A. Jaroszynski, Opt. Lett. 24, 25 (1999)ADSCrossRefGoogle Scholar
  18. 18.
    J. Lloyd, K. Wang, A. Barkan, D.M. Mittleman, Opt. Commun. 219, 289 (2003)ADSCrossRefGoogle Scholar
  19. 19.
    J. Dai, J. Zhang, W. Zhang, D. Grischkowsky, J. Opt. Soc. Am. B. 21, 1379 (2004)ADSCrossRefGoogle Scholar
  20. 20.
    M. Alshershby, Z. Hao, J. Lin, J. Phys. D: Appl. Phys. 45, 265401 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    A. Dobroiu, M. Yamashita, Y.N. Ohshima, Y. Morita, C. Otani, K. Kawase, Appl. Opt.. 43, 5637 (2004)ADSCrossRefGoogle Scholar
  22. 22.
    S. Xu, X. Sun, B. Zeng, W. Chu, J. Zhao, W. Liu, Y. Cheng, Z. Xu, S.L. Chin, Opt. Express. 20, 299 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    Y. Ren, M. Alshershby, J. Qin, Z. Hao, J. Lin, J. Appl. Phys. 113, 094904 (2013)ADSCrossRefGoogle Scholar
  24. 24.
    M. Alshershby, Y. Ren, J. Qin, Z. Hao, J. Lin, Appl. Phys. Lett. 102, 204101 (2013)ADSCrossRefGoogle Scholar
  25. 25.
    S. Sawallich, B. Globisch, C. Matheisen, M. Nagel, R.J. Dietz, T. Göbel, IEEE T. THz Sci. Techn. 6, 365 (2016)CrossRefGoogle Scholar
  26. 26.
    H.W. Du, H. Hoshina, C. Otani, K. Midorikawa, Appl. Phys. Lett. 107, 211113 (2015)ADSCrossRefGoogle Scholar
  27. 27.
    V.A. Andreeva, O.G. Kosareva, N.A. Panov, D.E. Shipilo, P.M. Solyankin, M.N. Esaulkov, A.P. González de Alaiza Martínez,, V.A. Shkurinov, L. Makarov, S.L. Bergé, Chin, Phys. Rev. Lett. 116, 063902 (2016)ADSCrossRefGoogle Scholar
  28. 28.
    E. Cabrera-Granado, Y. Chen, I. Babushkin, L. Bergé, S. Skupin, New J. Phys. 17, 023060 (2015)ADSCrossRefGoogle Scholar
  29. 29.
    J. Zhao, W. Liu, S. Li, D. Lu, Y. Zhang, Y. Peng, Y. Zhu, S. Zhuang, New clue to thorough understanding terahertz pulse generation by femtosecond laser filamentation Photonics Res. Accepted manuscript (2018)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Shanghai Key Laboratory of Modern Optical System, Terahertz Technology Innovation Research InstituteUniversity of Shanghai for Science and TechnologyShanghaiChina
  2. 2.Key Laboratory of High Power Laser and Physics, Shanghai Institute of Optics and Fine MechanicsChinese Academy of SciencesShanghaiChina

Personalised recommendations