Applied Physics B

, 124:39 | Cite as

Opposite change trend of electrical behavior curves near the threshold between GaAs- and GaN-multi-quantum-well laser diodes



The opposite and abrupt change trends of the electrical behavior between narrow and wide bang-gap multi-quantum-well (MQW) laser diodes (LDs) in the ‘threshold region’, which corresponds to the current region between two kinks in the IdV/dII curves, were confirmed from the apparent properties measured directly and junction properties extracted by our ac-IV method, as well as simulation calculations. In the threshold region, negative capacitance and series resistance curves in narrow bandgap LDs (wavelengths are 780 and 650 nm) drop down, while in wide-bandgap LDs (wavelengths are 450 and 405 nm), they jump up; the junction voltage curves in narrow bandgap LDs jump up, while in wide-bandgap LDs, they drop down. We qualitatively interpreted the opposite change trend of these electrical parameters, and concluded that different stimulated emission mechanisms caused this opposite change trend of LDs with these two types of materials.



This work was supported in part by the Nature Science Foundations of Tianjin City, Grant no. 17JCYBJC16200, in part by the National Nature Science Foundation of China, Grant no. DMR-11204209. We would like to express our special thanks to Professor Xiaodong Hu and Dr. Wei Yang for their helpful discussions. 


  1. 1.
    R. Bege, G. Blume, D. Jedrzejczyk, K. Paschke, D. Feise, J. Hofmann, F. Bugge, G. Trankle, Appl. Phys. B. 123, 109 (2017)ADSCrossRefGoogle Scholar
  2. 2.
    Ed, Murphy, Nat. Photonics. 4, 287 (2010)CrossRefGoogle Scholar
  3. 3.
    C.Z. Ning, IEEE J. Sel. Top. Quantum Electron. 19, 1503604 (2013)CrossRefGoogle Scholar
  4. 4.
    L.F. Feng, X.F. Yang, Y. Li, D. Li, C.D. Wang, D.S. Yao, X.D. Hu, H.R. Li, AIP Adv. 5, 047132 (2015)ADSCrossRefGoogle Scholar
  5. 5.
    H. Haken, Rev. Mod. Phys. 47, 67 (1975)ADSCrossRefGoogle Scholar
  6. 6.
    D.G. Deppe, D.L. Huffaker, T.J. Rogers, C. Lei, Z. Huang, B.G. Steetman, Appl. Phys. Lett. 60, 3081 (1992)ADSCrossRefGoogle Scholar
  7. 7.
    P.A. Barnes, T.L. Paoli, IEEE J. Quantum Electron. 12, 633 (1976)ADSCrossRefGoogle Scholar
  8. 8.
    L.F. Feng, C.D. Wang, H.X. Cong, C.Y. Zhu, J. Wang, X.S. Xie, C.Z. Lu, G.Y. Zhang, IEEE J. Quantum Electron. 43, 458 (2007)ADSCrossRefGoogle Scholar
  9. 9.
    L.F. Feng, D. Li, C.Y. Zhu, C.D. Wang, H.X. Cong, X.S. Xie, C.Z. Lu, J. Appl. Phys. 102, 063102 (2007)ADSCrossRefGoogle Scholar
  10. 10.
    D.k.. Guo, L.W. Cheng, X. Chen, F.S. Choa, J.Y. Fan, T. Worchesky, J. Appl. Phys. 109, 043105 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    P.G. Eliseev, P. Adamiec, A. Bercha, F. Dybała, R. Bohdan, W.A. Trzeciakowski, IEEE J. Quantum Electron. 41, 9 (2005)ADSCrossRefGoogle Scholar
  12. 12.
    H.G. Park, S.H. Kim, M.K. Seo, Y.G. Ju, S.B. Kim, H. Lee, IEEE J. Quantum Electron. 41, 1131 (2005)ADSCrossRefGoogle Scholar
  13. 13.
    H.C. Casey Jr., M.B. Panish, Heterostructure laser, B. Part (Academic, New York, 1978), chapt 7Google Scholar
  14. 14.
    D. Li, W. Yang, L.F. Feng, P.W. Roth, J. He, W.M. Du, Z.J. Yang, C.D. Wang, G.Y. Zhang, X.D. Hu, Appl. Phys. Lett. 102, 123501 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    M.X. Feng, J.P. Liu, S.M. Zhang, Z.S. Liu, D.S. Jiang, Z.C. Li, F. Wang, D.Y. Li, L.Q. Zhang, H. Wang, H. Yang, Appl. Phys. Lett. 102, 183509 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    X. Li, Z.S. Liu, D.G. Zhao, D.S. Jiang, P. Chen, J.J. Zhu, J. Yang, L.C. Le, W. Liu, X.G. He, X.J. Li, F. Liang, L.Q. Zhang, L.Q. Liu, H. Yang, Applied optics. 54, 8706 (2015)ADSCrossRefGoogle Scholar
  17. 17.
    K. Bansal, M. Henini, M.S. Alshammari, S. Datta, Appl. Phys. Lett. 105, 123503 (2014)ADSCrossRefGoogle Scholar
  18. 18.
    S.E. Laux, K. Hess, IEEE Trans. Electron. Devices. 46, 396 (1999)ADSCrossRefGoogle Scholar
  19. 19.
    M. Anutgan, I. Atilgan, Appl. Phys. Lett. 102, 153504 (2013)ADSCrossRefGoogle Scholar
  20. 20.
    D.P. Han, Y.J. Kim, J.I. Shim, D.S. Shin, IEEE Photonics Technology letters. 28, 2407 (2016)ADSCrossRefGoogle Scholar
  21. 21.
    L.F. Feng, D. Li, C.Y. Zhu, C.D. Wang, H.X. Cong, G.Y. Zhang, W.M. Du, J. Appl. Phys. 102, 094511 (2007)ADSCrossRefGoogle Scholar
  22. 22.
    L.F. Feng, Y. Li, C.Y. Zhu, H.X. Cong, C.D. Wang, IEEE J.Quantum Electron. 46, 1072 (2010)ADSCrossRefGoogle Scholar
  23. 23.
    Y. Li, C.D. Wang, L.F. Feng, C.Y. Zhu, H.X. Cong, D. Li, G.Y. Zhang, J. App. Phys. 109, 124506 (2011)ADSCrossRefGoogle Scholar
  24. 24.
    L.F. Feng, Y. Li, D. Li, X.D. Hu, W. Yang, C.D. Wang, Q.Y. Xing, Appl. Phys. Lett. 101, 233506 (2012)ADSCrossRefGoogle Scholar
  25. 25.
    M. Takahashi, N. Egami, T. Mukaihara, F. Koyama, K. Iga, IEEE J. Sel. Top. Quant. Electron. 3, 372 (1997)CrossRefGoogle Scholar
  26. 26.
    Takahiro, Numai, Fundamentals of semiconductor laser., (Springer, New York). Chapt. 5, 113 (2004)Google Scholar
  27. 27.
    L.V. Asryan, S. Luryi, R.A. Suris, IEEE J. Quantum. Electron. 39, 404 (2003)ADSCrossRefGoogle Scholar
  28. 28.
    S. Chichibu, T. Azuhata, T. Sota, S. Nakamura, Appl. Phys. Lett. 69, 4188 (1996)ADSCrossRefGoogle Scholar
  29. 29.
    Y. Fu, K.A. Chao, Phys. Rev. B. 43, 626 (1991)Google Scholar
  30. 30.
    Z.H. Lin, T.Y. Wang, G.B. Stringfellow, P.C. Taylor, Appl. Phys. Lett. 52, 1590 (1988)ADSCrossRefGoogle Scholar
  31. 31.
    W. Liu, R. Butte, A. Dussaigne, N. Grandjean, B. Deveaud, G. Jacopin, Phys. Rev. B. 94, 195411 (2016)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Department of Applied PhysicsTianjin UniversityTianjinPeople’s Republic of China
  2. 2.Hainan Technology and Business CollegeHaikouPeople’s Republic of China
  3. 3.Research Center for Wide-band Gap Semiconductors, State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of PhysicsPeking UniversityBeijingPeople’s Republic of China

Personalised recommendations