Applied Physics B

, 124:40 | Cite as

Two-dimensional tungsten photonic crystal selective emitter: effects of geometrical parameters and temperature

  • Ali Rostamnejadi
  • Meysam Daneshvar


In this paper, we have studied the effects of structural parameters and temperature on the emissivity of a square array of cylindrical nano/microcavities on tungsten slab by finite difference time domain method. It has been shown that the physical nature of the emissivity enhancement depends on the structural parameters of the nano/microcavities. In the case of narrow and shallow nanocavities with radius r ≤ 150 nm and depth d ≤ 150 nm; the emissivity has the same behavior as that of flat tungsten. Thermally excited surface plasmon polaritons cause a sharp peak in the emissivity of nanocavities with 150 ≤ d ≤ 250 nm and 150 ≤ r ≤ 350 nm at wavelength in the order of periodicity, λ ~ a. In the case of wide and deep microcavities with r ≥ 350 nm and d ≥ 250 nm; there are anomalous peaks in the emissivity which are well matched with the modified resonant wavelengths of a microcavity. At wavelengths shorter than periodicity, the Bragg diffraction from the surface of periodic microcavities reduces the emissivity. The obtained results show that to have a favorable selective thermal emitter from 2D W nano/microcavities with emission efficiency more than 90%, the periodicity should be as small as possible, the cavity depth should be large enough and its radius should be selected according to the working temperature.


  1. 1.
    Y.X. Yeng, M. Ghebrebrhan, P. Bermel, W.R. Chan, J.D. Joannopoulos, M. Soljačić, I. Celanovic, Proc. Natl. Acad. Sci. USA 109, 2280 (2012)ADSCrossRefGoogle Scholar
  2. 2.
    J.D. Joannopoulos, S.G. Johnson, J.N. Winn, R.D. Meade, Photonic crystals: molding the flow of light (Princeton university press, Princeton, 2011)MATHGoogle Scholar
  3. 3.
    V. Rinnerbauer, S. Ndao, Y.X. Yeng, W.R. Chan, J.J. Senkevich, J.D. Joannopoulos, M. Soljacic, I. Celanovic, Energy Environ. Sci. 5, 8815 (2012)CrossRefGoogle Scholar
  4. 4.
    V. Rinnerbauer, S. Ndao, Y.X. Yeng, J.J. Senkevich, K.F. Jensen, J.D. Joannopoulos, M. Soljačić, I. Celanovic, R.D. Geil, J. Vac. Sci. Technol. B 31, 011802 (2013)CrossRefGoogle Scholar
  5. 5.
    V. Rinnerbauer, Y.X. Yeng, W.R. Chan, J.J. Senkevich, J.D. Joannopoulos, M. Soljačić, I. Celanovic, Opt. Express 21, 11482 (2013)ADSCrossRefGoogle Scholar
  6. 6.
    J.B. Chou, Y.X. Yeng, A. Lenert, V. Rinnerbauer, I. Celanovic, M. Soljačić, E.N. Wang, S.-G. Kim, Opt. Express 22, A144 (2014)ADSCrossRefGoogle Scholar
  7. 7.
    B. Gesemann, S.L. Schweizer, R.B. Wehrspohn, Photonic. Nano. Fund. Appl. 8, 107 (2010)ADSCrossRefGoogle Scholar
  8. 8.
    S. Han, B.J. Lee, Int. J. Heat Mass Transfer. 84, 713 (2015)CrossRefGoogle Scholar
  9. 9.
    A. Kohiyama, M. Shimizu, H. Kobayashi, F. Iguchi, H. Yugami, Energy Proc. 57, 517 (2014)CrossRefGoogle Scholar
  10. 10.
    B. Zhao, L. Wang, Y. Shuai, Z.M. Zhang, Int. J. Heat Mass Transfer. 67, 637 (2013)CrossRefGoogle Scholar
  11. 11.
    Y.S. Touloukian, D.P. DeWitt,: Thermal radiative properties: metallic elements and alloys (Springer US, Berlin, 2014)Google Scholar
  12. 12.
    Y.X. Yeng, W.R. Chan, V. Rinnerbauer, V. Stelmakh, J.J. Senkevich, J.D. Joannopoulos, M. Soljacic, I. Čelanović, Opt. Express 23, A157 (2015)ADSCrossRefGoogle Scholar
  13. 13.
    Z. Zhou, E. Sakr, Y. Sun, and P. Bermel, Nanophotonics. 5, 1 (2016)ADSCrossRefGoogle Scholar
  14. 14.
    T. Bauer, Thermophotovoltaics: basic principles and critical aspects of system design (Springer Science & Business Media, New York, 2011)CrossRefGoogle Scholar
  15. 15.
    W.R. Chan, P. Bermel, R.C. Pilawa-Podgurski, C.H. Marton, K.F. Jensen, J.J. Senkevich, J.D. Joannopoulos, M. Soljačić, I. Celanovic, Proc. Natl. Acad. Sci. USA 110, 5309 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    R. Kivaisi, L. Stensland, Appl. Phys. A 27, 233 (1982)ADSCrossRefGoogle Scholar
  17. 17.
    N. Nguyen-Huu, J. Pištora, M. Cada, Nanotechnology 27, 155402 (2016)ADSCrossRefGoogle Scholar
  18. 18.
    Y.X. Yeng, W.R. Chan, V. Rinnerbauer, J.D. Joannopoulos, M. Soljačić, I. Celanovic, Opt. Express 21, A1035 (2013)ADSCrossRefGoogle Scholar
  19. 19.
    Y. Nam, Y.X. Yeng, A. Lenert, P. Bermel, I. Celanovic, M. Soljačić, E.N. Wang, Sol. Energy Mat. Sol. Cells 122, 287 (2014)CrossRefGoogle Scholar
  20. 20.
    H. Sai, H. Yugami, Y. Akiyama, Y. Kanamori, K. Hane, J. Opt. Soc. Am. A 18, 1471 (2001)ADSCrossRefGoogle Scholar
  21. 21.
    V. Rinnerbauer, A. Lenert, D.M. Bierman, Y.X. Yeng, W.R. Chan, R.D. Geil, J.J. Senkevich, J.D. Joannopoulos, E.N. Wang, M. Soljačić, Adv. Energy Mater. 4, (2014)Google Scholar
  22. 22.
    Z. Zhou, Q. Chen, P. Bermel, Energy Convers. Manag. 97, 63 (2015)CrossRefGoogle Scholar
  23. 23.
    J.-Y. Chang, Y. Yang, L. Wang, Int. J. Heat Mass Transfer. 87, 237 (2015)CrossRefGoogle Scholar
  24. 24.
    D. Chubb, Fundamentals of thermophotovoltaic energy conversion (Elsevier, Amsterdam, 2007)Google Scholar
  25. 25.
    H. Ye, H. Wang, Q. Cai, J. Quant. Spectrosc. Radiat. Transfer. 158, 119 (2015)ADSCrossRefGoogle Scholar
  26. 26.
    V. Stelmakh, V. Rinnerbauer, R. Geil, P. Aimone, J. Senkevich, J. Joannopoulos, M. Soljačić, I. Celanovic, Appl. Phys. Lett. 103, 123903 (2013)ADSCrossRefGoogle Scholar
  27. 27.
    I. Celanovic, N. Jovanovic, J. Kassakian, Appl. Phys. Lett. 92, 193101 (2008)ADSCrossRefGoogle Scholar
  28. 28.
    Y.-B. Chen, Z. Zhang, Opt. Commun. 269, 411 (2007)ADSCrossRefGoogle Scholar
  29. 29.
    H. Sai, H. Yugami, Appl. Phys. Lett. 85, 3399 (2004)ADSCrossRefGoogle Scholar
  30. 30.
    H. Sai, Y. Kanamori, K. Hane, H. Yugami, J. Opt. Soc. Am. A 22, 1805 (2005)ADSCrossRefGoogle Scholar
  31. 31.
    S. Lin, J. Fleming, Z. Li, I. El-Kady, R. Biswas, K.M. Ho, J. Opt. Soc. Am. B. 20, 1538 (2003)ADSCrossRefGoogle Scholar
  32. 32.
    H. Sai, Y. Kanamori, H. Yugami, J. Micromech. Microeng. 15, S243 (2005)CrossRefGoogle Scholar
  33. 33.
    H. Sai, Y. Kanamori, H. Yugami, Appl. Phys. Lett. 82, 1685 (2003)ADSCrossRefGoogle Scholar
  34. 34.
    A. Taflove, A. Oskooi, and S.G. Johnson, Advances in FDTD computational electrodynamics: photonics and nanotechnology (Artech house, Norwood, 2013)Google Scholar
  35. 35.
    A.F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J.D. Joannopoulos, S.G. Johnson, Comput. Phys. Commun. 181, 687 (2010)ADSCrossRefGoogle Scholar
  36. 36.
    A.D. Rakić, A.B. Djurišić, J.M. Elazar, and M.L. Majewski, Appl. opt. 37, 5271 (1998)ADSCrossRefGoogle Scholar
  37. 37.
    D. Chester, P. Bermel, J.D. Joannopoulos, M. Soljacic, I. Celanovic, Opt. Express. 19, A245 (2011)ADSCrossRefGoogle Scholar
  38. 38.
    I. Celanovic, D. Perreault, J. Kassakian, Phys. Rev. B. 72, 075127 (2005)ADSCrossRefGoogle Scholar
  39. 39.
    H. Sai, Y. Kanamori, Microscale. Thermophys. Eng. 7, 101 (2003)CrossRefGoogle Scholar
  40. 40.
    M. Shimizu, H. Yugami, J. Therm. Scie. Tech. 6, 297 (2011)CrossRefGoogle Scholar
  41. 41.
    D. Smith, W. Daenner, Y. Gohar, (ITER blanket, shield and material data base International Atomic Energy Agency, Vienna, 1991)Google Scholar
  42. 42.
    R. Knibbs, J. Phys. E 2, 515 (1969)ADSCrossRefGoogle Scholar
  43. 43.
    J. Jackson, J.D. Jackson, Wie classical electrodynamics, 3rd edn. (John Wiley & Sons, Limited, 2005)MATHGoogle Scholar
  44. 44.
    M. Ghebrebrhan, P. Bermel, Y. Yeng, I. Celanovic, M. Soljačić, J. Joannopoulos, Phys. Rev. A 83, 033810 (2011)ADSCrossRefGoogle Scholar
  45. 45.
    R. Gordon, A.G. Brolo, Opt. Express 13, 1933 (2005)ADSCrossRefGoogle Scholar
  46. 46.
    E. Lansey, N. Pishbin, J.N. Gollub, D.T. Crouse, J. Opt. Soc. Am. B 29, 262 (2012)ADSCrossRefGoogle Scholar
  47. 47.
    H. Shin, P.B. Catrysse, S. Fan, Phys. Rev. B 72, 085436 (2005)ADSCrossRefGoogle Scholar
  48. 48.
    F. Kusunoki, J. Takahara, T. Kobayashi, Electron. Lett. 39, 23 (2003)CrossRefGoogle Scholar
  49. 49.
    D. Peykov, Y.X. Yeng, I. Celanovic, J.D. Joannopoulos, and C. A. Schuh, Opt. Express 23, 9979 (2015)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electroceramic and Electrical EngineeringMalek Ashtar University of TechnologyShahin ShahrIran

Personalised recommendations