Applied Physics B

, 124:42 | Cite as

Calibration curves for commercial copper and aluminum alloys using handheld laser-induced breakdown spectroscopy

  • B. N. Bennett
  • M. Z. Martin
  • D. N. Leonard
  • E. Garlea


Handheld laser-induced breakdown spectroscopy (HH LIBS) was used to study the elemental composition of four copper alloys and four aluminum alloys to produce calibration curves. The HH LIBS instrument used is a SciAps Z-500, commercially available, that contains a class-1 solid-state laser with an output wavelength of 1532 nm, laser energy of 5 mJ/pulse, and a pulse duration of 5 ns. Test samples were solid specimens comprising copper and aluminum alloys and data were collected from the samples’ surface at three different locations, employing a 12-point-grid pattern for each data set. All three data sets of the spectra were averaged, and the intensity, corrected by subtraction of background, was used to produce the elemental calibration curves. Calibration curves are presented for the matrix elements, copper and aluminum, as well as several minor elements. The surface damage produced by the laser was examined by microscopy. The alloys were tested in air and in a glovebox to evaluate the instrument’s ability to identify the constituents within materials under different environmental conditions. The main objective of using this HH LIBS technology is to determine its capability to fingerprint the presence of certain elements related to subpercent level within materials in real time and in situ, as a starting point for undertaking future complex material characterization work.



Funding for this research was provided by the Y-12 National Security Complex under the Plant Directed Research, Development, and Demonstration program. This work of authorship and those incorporated herein were prepared by Consolidated Nuclear Security, LLC (CNS) as accounts of work sponsored by an agency of the United States Government under Contract DE-NA-0001942. Neither the United States Government nor any agency thereof, nor CNS, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility to any non-governmental recipient hereof for the accuracy, completeness, use made, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency or contractor thereof, or by CNS. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency or contractor (other than the authors) thereof. This document has been authored by Consolidated Nuclear Security, LLC, under Contract DE-NA-0001942 with the U.S. Department of Energy/National Nuclear Security Administration, or a subcontractor thereof. The United States Government retains and the publisher, by accepting the document for publication, acknowledges that the United States Government retains a nonexclusive, paid up, irrevocable, worldwide license to publish or reproduce the published form of this document, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, or allow others to do so, for United States Government purposes.


  1. 1.
    A.V. Pakhomov, W. Nichols, J. Borysow, Appl. Spectrosc. 50, 880 (1996)ADSCrossRefGoogle Scholar
  2. 2.
    A.S. Eppler, D.A. Cremers, D.D. Hickmott, M.J. Ferris, A.C. Koskelo, Appl. Spectrosc. 50, 1181 (1996)ADSCrossRefGoogle Scholar
  3. 3.
    J.M. Vadillo, S. Palanco, M.D. Romero, J.J. Laserna, Fresenius J. Anal. Chem. 355, 909 (1996)CrossRefGoogle Scholar
  4. 4.
    C.M. Davees, H.H. Telle, A.W. Williams, Fresnius J. Anal. Chem. 355, 895 (1996)Google Scholar
  5. 5.
    D.A. Cremers, J.E. Barefield, I.I.,A.C. Koskelo, Appl. Spectrosc. 49, 857 (1995)ADSCrossRefGoogle Scholar
  6. 6.
    K.Y. Yamamoto, D.A. Cremers, M.J. Ferris, L.E. Foster, Appl. Spectrosc. 50, 222 (1996)ADSCrossRefGoogle Scholar
  7. 7.
    C. Geertsen, J.L. Lacour, P. Mauchien, L. Pierrard, Spectrochim. Acta Part B 51, 1403 (1996)ADSCrossRefGoogle Scholar
  8. 8.
    K.J. Grant, G.L. Paul, J.A. O’Neill, Appl. Spectrosc. 45, 701 (1991)ADSCrossRefGoogle Scholar
  9. 9.
    M.Z. Martin, M.D. Cheng, R.C. Martin, Aerosol Sci. Technol. 31(6), 409 (1999)ADSCrossRefGoogle Scholar
  10. 10.
    M.Z. Martin, N. Labbe, T.G. Rials, S.D. Wullschleger, Spectrochim. Acta Part B 60, 7–8 (2005)CrossRefGoogle Scholar
  11. 11.
    M.Z. Martin, N. Labbé, N. André, R. Harris, M. Ebinger, S.D. Wullschleger, A.A. Vass, Spectrochim. Acta Part B 62, 12 (2007)Google Scholar
  12. 12.
    M.Z. Martin, A.J. Stewart, K.D. Gwinn, J.C. Waller, Appl. Opt. 49(13), C161–C167 (2010)CrossRefGoogle Scholar
  13. 13.
    J. Kaiser, M. Galiová, K. Novotný, R. Červenka, L. Reale, J. Novotný, M. Liška, O. Samek, V. Kanický, A. Hrdlička, K. Stejskal, V. Adam, R. Kizek, Spectrochim. Acta Part B 64, 67–73 (2009)CrossRefGoogle Scholar
  14. 14.
    L.C. Trevizan, D. Santos Jr., R.E. Samad, N.D. Vieira Jr., L.C. Nunes, I.A. Rufini, F.J. Krug, Spectrochim. Acta Part B 64, 573–581 (2009)CrossRefGoogle Scholar
  15. 15.
    M.Z. Martin, N. Labbé, N. André, S.D. Wullschleger, R.D. Harris, M.H. Ebinger, Soil Sci. Soc. Am. J. 74, 1 (2010)CrossRefGoogle Scholar
  16. 16.
    M.Z. Martin, S.D. Wullschleger, C.T. Garten Jr., A.V. Palumbo, in Laser-induced breakdown spectroscopy Chapter 15, ed. by J.P. Singh, S. Narayan Thakur (Elsevier Science B.V., Amsterdam, 2007)Google Scholar
  17. 17.
    R.S. Bricklemyer, D.J. Brown, J.E. Barefield, S.M. Clegg, Soil Sci. Soc. Am. J. 75, 3 (2011)CrossRefGoogle Scholar
  18. 18.
    M.Z. Martin, M.A. Mayes, K.R. Heal, D.J. Brice, S.D. Wullschleger, Spectrochim. Acta Part B 87, 100–107 (2013)Google Scholar
  19. 19.
    N.F. Yang, N.S. Eash, J. Lee, M.Z. Martin, Soil Sci. 175, 9 (2010)CrossRefGoogle Scholar
  20. 20.
    M.E. Essington, G.V. Menichenko, M.A. Stewart, R.A. Hull, Soil Sci. Soc. Am. J. 73, 5 (2009)CrossRefGoogle Scholar
  21. 21.
    R.T. Wainner, R.S. Harmon, A.W. Miziolek, K.L. McNesby, P.D. French, Spectrochim. Acta Part B 56(6), 777–793 (2001)CrossRefGoogle Scholar
  22. 22.
    P. Lindfors, M. Krapu, Europ. Pat. App. EP 1936361 A1 20080625 (2008)Google Scholar
  23. 23.
    S.G. Pavlov, E.K. Jessberger, H.W. Hübersa, S. Schröder, I. Rauschenbach, S. Florek, J. Neumann, H. Henkel, S. Klinkner, Adv. Space Res. 48, 4 (2011)CrossRefGoogle Scholar
  24. 24.
    J.-F.Y. Gravel, F.R. Doucet, P. Bouchard, M. Sabsabi, J. Anal. At. Spectrom. 26, 1354–1361 (2011)CrossRefGoogle Scholar
  25. 25.
    D.A. Cremers, A. Beddingfield, R. Smithwick, R.C. Chinni, C.R. Jones, B. Beardsley, L. Karch, Appl. Spectrosc. 66, 3 (2012)CrossRefGoogle Scholar
  26. 26.
    F. Gonzaga Barbieri, C. Pasquini, Spectrochim. Acta Part B 69, 20–24 (2012)CrossRefGoogle Scholar
  27. 27.
    A.S. Laxmiprasad, V.L.N. Sridhar Raja, S. Menon, A. Goswami, M.V.H. Rao, K.A. Lohar, Adv. Space Res. 52, 2 (2013)CrossRefGoogle Scholar
  28. 28.
    J. Rakovsky, P. Cermak, O. Musset, P. Veis, Spectrochim. Acta Part B 101, 289 (2014)ADSCrossRefGoogle Scholar
  29. 29.
    P. Bouchard, M. Sabsabi, F. Doucet, L.C. Ozcan, WO/2016/070290 Inter. Appl. No: PCT/CA2015/051155 (2015)Google Scholar
  30. 30.
    S. Li, L. Liu, A. Yan, S. Huang, X. Huang, R. Chen, Y. Lu, K. Chen, Rev. Sci. Instrum. 88, 2 (2017)Google Scholar
  31. 31.
    F.B. Gonzaga, L.R. Braga Jr., A.P. Sampaio, T.S. Martins, C.G. de Oliveira, R.M. Pacheco, Anal. Bioanal. Chem. 409, 11 (2017)CrossRefGoogle Scholar
  32. 32.
    F.F. Zha, G.H. Niu, Q.Y. Lin, S. Wang, Y.X. Duan, Instrum. Sci. Technol. 45, 6 (2017)CrossRefGoogle Scholar
  33. 33.
    SciAps, Inc., LIBS: Handheld Laser Induced Breakdown Spectroscopy (HH LIBS)-SciAps. Weblink (2016)Google Scholar
  34. 34.
    D. Day, B. Connors, M. Jennings, J. Egan, K. Derman, P. Soucy, S. Moller, D. Sackett, Proc. SPIE 9482, Next-Generation Spectroscopic Technologies VIII, 948206 (3 June 2015).
  35. 35.
    Lin, Xiaomei et al., Plasma Sci. Technol. 17, 11 (2015)Google Scholar
  36. 36.
    E. Tognoni, G. Cristoforetti, Opt. Laser Technol. 79, 164–172 (2016)CrossRefGoogle Scholar
  37. 37.
    C. Aragon, J.A. Aguilera, Spectrochim. Acta Part B 63, 893–996 (2008)CrossRefGoogle Scholar
  38. 38.
    E. Tognoni, V. Palleschi, M. Corsi, G. Cristoforetti, Spectrochim. Acta Part B 57, 1115–1130 (2002)CrossRefGoogle Scholar
  39. 39.
    O.V. Borisov, X. Mao, R.E. Russo, Spectrochim. Acta Part B 55, 11 (2000)CrossRefGoogle Scholar
  40. 40.
    M.Z. Martin, M.D. Cheng, Appl. Spectrosc. 54, 9 (2000)ADSCrossRefGoogle Scholar
  41. 41.
    W.F. Ho, C.W. Ng, N.H. Cheung, Appl. Spectrosc. 51, 87 (1997)ADSCrossRefGoogle Scholar
  42. 42.
    A. Biswas, H. Latifi, L.J. Radziemski, R.L. Armstrong, Appl. Opt. 27, 2386 (1988)ADSCrossRefGoogle Scholar
  43. 43.
    P. Chylek, M.A. Jarzembski, V. Srivastava, R.G. Pinnick, J.D. Pendleton, J.P. Cruncleton, Appl. Opt. 26, 760 (1987)ADSCrossRefGoogle Scholar

Copyright information

© This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2018

Authors and Affiliations

  • B. N. Bennett
    • 1
  • M. Z. Martin
    • 2
  • D. N. Leonard
    • 3
  • E. Garlea
    • 1
  1. 1.Y-12 National Security Complex, Development DivisionOak RidgeUSA
  2. 2.Oak Ridge National Laboratory, Biosciences DivisionOak RidgeUSA
  3. 3.Oak Ridge National Laboratory, Materials Science and Technology DivisionOak RidgeUSA

Personalised recommendations