Advertisement

Applied Physics B

, 124:41 | Cite as

High-repetition-rate interferometric Rayleigh scattering for flow-velocity measurements

  • Jordi Estevadeordal
  • Naibo Jiang
  • Andrew D. Cutler
  • Josef J. Felver
  • Mikhail N. Slipchenko
  • Paul M. Danehy
  • James R. Gord
  • Sukesh Roy
Rapid Communication

Abstract

High-repetition-rate interferometric-Rayleigh-scattering (IRS) velocimetry is demonstrated for non-intrusive, high-speed flow-velocity measurements. High temporal resolution is obtained with a quasi-continuous burst-mode laser that is capable of operating at 10–100 kHz, providing 10-ms bursts with pulse widths of 5–1000 ns and pulse energy > 100 mJ at 532 nm. Coupled with a high-speed camera system, the IRS method is based on imaging the flow field through an etalon with 8-GHz free spectral range and capturing the Doppler shift of the Rayleigh-scattered light from the flow at multiple points having constructive interference. The seed-laser linewidth permits a laser linewidth of < 150 MHz at 532 nm. The technique is demonstrated in a high-speed jet, and high-repetition-rate image sequences are shown.

Notes

Acknowledgements

The authors thank Drs. Jayanta Panda and Amy Fagan of NASA for many helpful discussions. Dr. Jordi Estevadeordal acknowledges the AFRL Summer Faculty Fellowship Program and North Dakota State University support. Approved for public release; distribution unlimited (# 88ABW-2017-0533).

References

  1. 1.
    M.N. Slipchenko, J.D. Miller, S. Roy, J.R. Gord, S.S. Danczyk, T. Meyer, Quasi-continuous burst-mode laser for high-speed planar imaging. Opt. Lett. 37, 1346 (2012)ADSCrossRefGoogle Scholar
  2. 2.
    N. Jiang, M. Nishihara, W.R. Lempert, Quantitative NO2 molecular tagging velocimetry at 500 kHz frame rate. Appl. Phys. Lett. 97, 221103 (2010)ADSCrossRefGoogle Scholar
  3. 3.
    R.A. Patton, K.N. Gabet, N. Jiang, W.R. Lempert, J.A. Sutton, Multi-kHz temperature imaging in turbulent non-premixed flames using planar Rayleigh scattering. Appl. Phys. B 108, 377 (2012)ADSCrossRefGoogle Scholar
  4. 4.
    K.N. Gabet, R.A. Patton, N. Jiang, W.R. Lempert, J.A. Sutton, High-speed CH2O PLIF imaging in turbulent flames using a pulse-burst laser system. Appl. Phys. B 106, 569 (2012)ADSCrossRefGoogle Scholar
  5. 5.
    R.B. Miles, W.R. Lempert, J. N. Forkey. Laser Rayleigh scattering. Meas. Sci. Technol. 12, R33-R51 (2001)CrossRefGoogle Scholar
  6. 6.
    F. Mielke, K.A. Elam, C.J. Sung, Multi-property measurements at high sampling rates using Rayleigh scattering. AIAA J. 47, 850–862 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    D. Bivolaru, P.M. Danehy, J.W. Lee, Intracavity Rayleigh-Mie scattering for multipoint two-component velocity measurement. Opt. Lett. 31, 1645–1647 (2006)ADSCrossRefGoogle Scholar
  8. 8.
    R.G. Seasholtz, A.E. Buggele, M.F. Reeder, Flow measurements based on Rayleigh scattering and Fabry-Perot interferometer. Opt. Lasers Eng. 27, 543–570 (1997)CrossRefGoogle Scholar
  9. 9.
    G.E. Elsinga, F. Scarano, B. Wieneke, B.W. van Oudheusden, Tomographic particle image velocimetry. Exp. Fluids 41, 933 (2006)CrossRefGoogle Scholar
  10. 10.
    T. Ecker, D.R. Brooks, K.T. Lowe, W.F. Ng, Development and application of a point Doppler velocimeter featuring two-beam multiplexing for time-resolved measurements of high-speed flow. Exp. Fluids 55, 1819 (2014)CrossRefGoogle Scholar
  11. 11.
    B. Thurow, N. Jiang, W. Lempert, M. Samimy, Development of megahertz-rate planar Doppler velocimetry for high speed flows. AIAA J. 43, 500–511 (2005)ADSCrossRefGoogle Scholar
  12. 12.
    W.R. Lempert, N. Jiang, S. Sethuram, M. Samimy, Molecular tagging velocimetry measurements in supersonic microjets. AIAA J. 40, 1065–1070 (2002)ADSCrossRefGoogle Scholar
  13. 13.
    S.V. Naik, W.D. Kulatilaka, K.K. Venkatesan, R.P. Lucht, Pressure, temperature, and velocity measurements in underexpanded jets using laser-induced fluorescence imaging. AIAA J. 47, 839–849 (2009)ADSCrossRefGoogle Scholar
  14. 14.
    R.B. Miles, J. Grinstead, R.H. Kohl, G. Diskin, The RELIEF flow tagging technique and its application in engine testing facilities and for helium-air mixing studies. Meas. Sci. Technol. 11, 1272–1281 (2000)ADSCrossRefGoogle Scholar
  15. 15.
    N.M. Sijtsema, N.J. Dam, R.J.H. Klein-Douwel, J.J. Meulen, Air photolysis and recombination tracking: a new molecular tagging velocimetry scheme. AIAA J. 40, 1061–1064 (2002)ADSCrossRefGoogle Scholar
  16. 16.
    N.J. DeLuca, R.B. Miles, N. Jiang, W.D. Kulatilaka, A.K. Patnaik, J.R. Gord, FLEET velocimetry for combustion and flow diagnostics. Appl. Opt. 56, 8632–8638 (2017)CrossRefGoogle Scholar
  17. 17.
    J. Panda, R.G. Seasholtz, Measurement of shock structure and shock-vortex interaction in underexpanded jets using Rayleigh scattering. Phys. Fluids 11, 3761 (1999)ADSCrossRefzbMATHGoogle Scholar
  18. 18.
    K.B. Yüceil, M.V. Ötügen, E. Arik, Interferometric Rayleigh scattering and PIV measurements in the near field of underexpanded sonic jets. 41st AIAA Meeting, Reno, NV, 2003, AIAA-2003-0917 (2003)Google Scholar
  19. 19.
    W. Sheng, S. Jin-Hai, H. Zhi-yun, Y. Jing-feng, L. Jing-Ru, Two-dimensional interferometric Rayleigh scattering velocimetry using multibeam probe laser. Opt. Eng. 56, 111705 (2017)ADSCrossRefGoogle Scholar
  20. 20.
    L. Chen, F. Yang, T. Su, W. Bao, B. Yan, S. Chen, R. Li, High sampling rate measurement of turbulence velocity fluctuations in Mach 1.8 Laval jet using interferometric Rayleigh scattering. Chinese Phys. B 26, 025205 (2017)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Mechanical Engineering DepartmentNorth Dakota State UniversityFargoUSA
  2. 2.Spectral EnergiesLLCBeavercreekUSA
  3. 3.School of Engineering and Applied ScienceGeorge Washington UniversityWashington, D.C.USA
  4. 4.Advanced Measurements and Data Systems BranchNASA Langley Research CenterHamptonUSA
  5. 5.Air Force Research LaboratoryAerospace Systems DirectorateDaytonUSA

Personalised recommendations