Skip to main content
Log in

Impersonation attack on a quantum secure direct communication and authentication protocol with improvement

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We analyze the security of a quantum secure direct communication and authentication protocol based on single photons. We first give an impersonation attack on the protocol. The cryptanalysis shows that there is a gap in the authentication procedure of the protocol so that an opponent can reveal the secret information by an undetectable attempt. We then propose an improvement for the protocol and show it closes the gap by applying a mutual authentication procedure. In the improved protocol single photons are transmitted once in a session, so it is easy to implement as the primary protocol. Furthermore, we use a novel technique for secret order rearrangement of photons by which not only quantum storage is eliminated also a secret key can be reused securely. So the new protocol is applicable in practical approaches like embedded system devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Secure communication based on quantum cryptography.

  2. Quantum key distribution.

  3. Quantum secret sharing.

  4. Quantum identity authentication.

  5. Quantum digital signature.

  6. Quantum secure direct communication.

  7. One-time-pad.

References

  1. C.H. Bennett, G.Q. Brassard, Cryptography: public key distribution and coin tossing, in Proc. IEEE Conf. Computers Systems and Signal Processing (Bangalore, India) (IEEE, New York, 1984), p. 175 (December 1019)

  2. P.W. Shor, J. Preskill, Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85(2), 441 (2000)

    Article  ADS  Google Scholar 

  3. M. Peev, C. Pacher, R. Allaume, C. Barreiro, J. Bouda, W. Boxleitner, T. Debuisschert, E. Diamanti, M. Dianati, J.F. Dynes, S. Fasel, The SECOQC quantum key distribution network in Vienna. New J. Phys. 11(7), 075001 (2009)

    Article  ADS  Google Scholar 

  4. P. Schartner, C. Kollmitzer, Quantum-cryptographic networks from a prototype to the Citizen. Applied Quantum Cryptography, Springer, Berlin, Heidelberg, pp 173–184 (2010)

  5. C. Kollmitzer, C. Moesslacher, The Ring of Trust Model. Applied Quantum Cryptography, Springer, Berlin, Heidelberg, pp 185–210 (2010)

  6. Y. Chen, P.K. Verma, S. Kak, Embedded security framework for integrated classical and quantum cryptography services in optical burst switching networks. Secur. Commun. Netw. 2(6), 546–554 (2009)

    Google Scholar 

  7. W.P. Schleich, K.S. Ranade, C. Anton, M. Arndt, M. Aspelmeyer, M. Bayer, G. Berg, T. Calarco, H. Fuchs, E. Giacobino, M. Grassl, Quantum technology: from research to application. Appl. Phys. B 122(5), 130 (2016)

    Article  ADS  Google Scholar 

  8. M. Zwerger, H.J. Briegel, W. Dr, Measurement-based quantum communication. Appl. Phys. B 122(3), 50 (2016)

    Article  ADS  Google Scholar 

  9. M. Hillery, V. Buzek, A. Berthiaume, Quantum secret sharing. Phys. Rev. A 59(3), 1829 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. H. Barnum, C. Crpeau, D. Gottesman, A. Smith, A. Tapp, Authentication of quantum messages. In Foundations of Computer Science, 2002. Proceedings. The 43rd Annual IEEE Symposium on IEEE (2002), pp. 449–458

  11. D. Gottesman, I. Chuang, Quantum digital signatures. arXiv preprint quant-ph/0105032 (2001)

  12. G.L. Long, X.S. Liu, Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65(3), 032302 (2002)

    Article  ADS  Google Scholar 

  13. F.G. Deng, G.L. Long, Secure direct communication with a quantum one-time pad. Phys. Rev. A 69(5), 052319 (2004)

    Article  ADS  Google Scholar 

  14. Y.H. Chou, G.J. Zeng, F.J. Lin, C.Y. Chen, H.C. Chao, Quantum secure communication network protocol with entangled photons for mobile communications. Mobile Netw. Appl. 19(1), 121–130 (2014)

    Article  Google Scholar 

  15. G. Gao, Cryptanalysis and improvement of quantum secure communication network protocol with entangled photons for mobile communications. Phys. Scr. 89(12), 125102 (2014)

    Article  ADS  Google Scholar 

  16. T. Hwang, Y.P. Luo, C.W. Yang, T.H. Lin, Quantum authencryption: one-step authenticated quantum secure direct communications for off-line communicants. Quantum inform. Process. 13(4), 925–933 (2014)

    Article  ADS  Google Scholar 

  17. Y.Y. Yang, A quantum secure direct communication protocol without quantum memories. Int. J. Theor. Phys. D 53(7), 2216–2221 (2014)

    Article  MathSciNet  Google Scholar 

  18. Y. Chang, C. Xu, S. Zhang, L. Yan, Controlled quantum secure direct communication and authentication protocol based on five-particle cluster state and quantum one-time pad. Chin. Sci. Bull. 59(21), 2541–2546 (2014)

    Article  Google Scholar 

  19. X. Zou, D. Qiu, Three-step semiquantum secure direct communication protocol. Sci. China Phys. Mech. Astron. 57(9), 1696–1702 (2014)

    Article  ADS  Google Scholar 

  20. S. Hassanpour, M. Houshmand, Efficient controlled quantum secure direct communication based on GHZ-like states. Quantum Inform. Process. 14(2), 739–753 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. F.G. Deng, G.L. Long, X.S. Liu, Two-step quantum direct communica-tion protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A 68(4), 042317 (2003)

    Article  ADS  Google Scholar 

  22. J. Hu, B. Yu, M. Jing, L. Xiao, S. Jia, G. Qin, G. Long, Experimental quantum secure direct communication with single photons. arXiv preprint arXiv:1503.00451 (2015)

  23. S. Mi, T.J. Wang, G.S. Jin, C. Wang, High-capacity quantum secure direct communication with orbital angular momentum of photons. Photon. J. IEEE 7(5), 1–8 (2015)

    Article  Google Scholar 

  24. W. Zhang, D.S. Ding, Y.B. Sheng, L. Zhou, B.S. Shi, G.C. Guo, Quantum secure direct communication with quantum memory. Phys. Rev. Lett. 118(22), 220501 (2017)

    Article  ADS  Google Scholar 

  25. K. Shih-Hung, H. Tzonelih, Cryptanalysis and improvement of controlled secure direct communication. Chin. Phys. B 22(6), 060308 (2013)

    Article  Google Scholar 

  26. L. Jun, L. Yi-Min, C. Hai-Jing, S. Shou-Hua, Z. Zhan-Jun, Revisiting quantum secure direct communication with W state. Chin. Phys. Lett. 23(10), 2652 (2006)

    Article  ADS  Google Scholar 

  27. F. Gao, S.J. Qin, Q.Y. Wen, F.C. Zhu, Cryptanalysis of multiparty controlled quantum secure direct communication using GreenbergerHorneZeilinger state. Opt. Commun. 283(1), 192–195 (2010)

    Article  ADS  Google Scholar 

  28. X.H. Li, F.G. Deng, H.Y. Zhou, Improving the security of secure direct communication based on the secret transmitting order of particles. Phys. Rev. A 74(5), 054302 (2006)

    Article  ADS  Google Scholar 

  29. L. Jun, L. Yi-Min, X. Yan, Z. Zhan-Jun, Revisiting controlled quantum secure direct communication using a non-symmetric quantum channel with quantum superdense coding. Commun. Theor. Phys. 49(4):887 (2008)

  30. T.H. Lin, C.W. Yang, T. Hwang, Attacks and improvement on Quantum direct communication with authentication. Int. J. Theor. Phys. 53(2), 597–602 (2014)

    Article  MATH  Google Scholar 

  31. Y.G. Yang, Y.W. Teng, H.P. Chai, Q.Y. Wen, Revisiting the security of secure direct communication based on ping-pong protocol [Quantum Inf. Process. 8, 347 (2009)]. Quantum Inform. Process. 10(3), 317–323 (2011)

    Article  MATH  Google Scholar 

  32. T.H. Lin, T. Hwang, Man-in-the-middle attack on quantum secure communications with authentication. Quantum inform. Process. 13(4), 917–923 (2014)

    Article  ADS  Google Scholar 

  33. S.J. Qin, F. Gao, Q.Y. Wen, F.C. Zhu, Improving the quantum secure direct communication by entangled qutrits and entanglement swapping against intercept-and-resend attack. Opt. Commun. 283(7), 1566–1568 (2010)

    Article  ADS  Google Scholar 

  34. M. Naseri, Comment on:secure direct communication based on ping-pong protocol [Quantum Inf. Process. 8, 347 (2009)]. Quantum Inform. Process. 9(6), 693–698 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  35. Z.C. Zhu, A.Q. Hu, A.M. Fu, Cryptanalysis and improvement of the controlled quantum secure direct communication by using four particle cluster states. Int. J. Theor. Phys. 53(5), 1495–1501 (2014)

    Article  MATH  Google Scholar 

  36. Z.H. Liu, H.W. Chen, D. Wang, W.Q. Li, Cryptanalysis and improvement of three-particle deterministic secure and high bit-rate direct quantum communication protocol. Quantum Inform. Process. 13(6), 1345–1351 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. C.H. Chang, Y.P. Luo, C.W. Yang, T. Hwang, Intercept-and-resend attack on controlled bidirectional quantum direct communication and its improvement. Quantum Inform. Process. 14(9), 3515–3522 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Q.L. Yue, C.H. Yu, B. Liu, Q.L. Wang, Cryptanalysis and improvement on robust EPR-pairs-based quantum secure communication with authentication resisting collective noise. Int. J. Theor. Phys. 55(10), 4262–4271 (2016)

    Article  MATH  Google Scholar 

  39. Z. Liu, H. Chen, W. Liu, Cryptanalysis of controlled quantum secure direct communication and authentication protocol based on five-particle cluster state and quantum one-time pad. Int. J. Theor. Phys. 55(10), 4564–4576 (2016)

    Article  MATH  Google Scholar 

  40. Z.H. Liu, H.W. Chen, W.J. Liu, information leakage problem in efficient bidirectional quantum secure direct communication with single photons in both polarization and spatial-mode degrees of freedom. Int. J. Theor. Phys. 55(11), 4681–4686 (2016)

    Article  MATH  Google Scholar 

  41. C. Zhang, H. Situ, Information leakage in efficient bidirectional quantum secure direct communication with single photons in both polarization and spatial-mode degrees of freedom. Int. J. Theor. Phys. 55(11), 4702–4708 (2016)

    Article  MATH  Google Scholar 

  42. C.E. Shannon, Communication theory of secrecy systems. Bell Labs Tech. J. 28(4), 656–715 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  43. C. Portmann, Key recycling in authentication. IEEE Trans. Inf. Theory 60(7), 4383–4396 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  44. Y. Chang, C. Xu, S. Zhang, L. Yan, Quantum secure direct communication and authentication protocol with single photons. Chin. Sci. Bull. 58(36), 4571–4576 (2013)

    Article  Google Scholar 

  45. J. Wang, Q. Zhang, C.J. Tang, Quantum secure direct communication based on order rearrangement of single photons. Phys. Lett. A 358(4), 256–258 (2006)

    Article  ADS  MATH  Google Scholar 

  46. A.D. Zhu, Y. Xia, Q.B. Fan, S. Zhang, Secure direct communication based on secret transmitting order of particles. Phys. Rev. A 73(2), 022338 (2006)

    Article  ADS  Google Scholar 

  47. B. Schneier, Applied cryptography: protocols, algorithms, and source code in C (Wiley, New York, 2007)

    MATH  Google Scholar 

  48. T.O. e Silva, S. Herzog, S. Pardi, Empirical verification of the even Goldbach conjecture and computation of prime gaps up to 4 × 1018. Math. Comput. 83(288), 2033–2060 (2014)

  49. H. Lai, J. Xiao, M.A. Orgun, L. Xue, J. Pieprzyk, Quantum direct secret sharing with efficient eavesdropping-check and authentication based on distributed fountain codes. Quantum Inf. Process. 13(4), 895–907 (2014)

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massoud Hadain Dehkordi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amerimehr, A., Hadain Dehkordi, M. Impersonation attack on a quantum secure direct communication and authentication protocol with improvement. Appl. Phys. B 124, 44 (2018). https://doi.org/10.1007/s00340-018-6907-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-018-6907-z

Navigation