Applied Physics B

, 124:36 | Cite as

Propagation and interaction of finite-energy Airy–Hermite–Gaussian beams in photorefractive media

  • Qichang Jiang
  • Yanli Su
  • Hexian Nie
  • Ziwei Ma
  • Yonghong Li
Article
  • 78 Downloads

Abstract

We investigate numerically the propagation and interaction characteristics of finite-energy Airy–Hermite–Gaussian beams in biased photorefractive media. For the case of first-order Hermite polynomial, two main lobes of the initial input beam can form breathing solitons with two components. The interval between two soliton components in the \(y{\text{-direction}}\) increases gradually with the propagation distance, while the central position of two soliton components in the \(x{\text{-direction}}\) is almost unchanged during propagation. Moreover, in interaction situations, four main lobes of the two Airy–Hermite–Gaussian beams can also form breathing solitons with four components under the in-phase and out-of-phase conditions, respectively.

Notes

Acknowledgements

The project was supported by the Natural Science Foundation of Shanxi Province, China (2011011003-2) and the Doctor Scientific Research Fund of Yuncheng University (YQ-2015011).

References

  1. 1.
    J. Durnin, J.J. Miceli, J.H. Eberly, Phys. Rev. Lett. 58, 1499 (1987)ADSCrossRefGoogle Scholar
  2. 2.
    J.C. Gutiérrez-Vega, M.D. Iturbe-Castillo, S. Chávez-Cerda, Opt. Lett. 25, 1493 (2000)ADSCrossRefGoogle Scholar
  3. 3.
    U.T. Schwarz, M.A. Bandres, J.C. Gutiérrez-Vega, Opt. Lett. 29, 1870 (2004)ADSCrossRefGoogle Scholar
  4. 4.
    G.A. Siviloglou, D.N. Christodoulides, Opt. Lett. 32, 979 (2007)ADSCrossRefGoogle Scholar
  5. 5.
    G.A. Siviloglou, J. Broky, K. Dholakia, D.N. Christodoulides, Phys. Rev. Lett. 99, 13901 (2007)CrossRefGoogle Scholar
  6. 6.
    H.F. Wang, L.P. Shi, B. Lukyanchuk, C. Sheppard, C.T. Chong, Nat. Photonics. 2, 501 (2008)CrossRefGoogle Scholar
  7. 7.
    F.O. Fahrbach, S. Philipp, R. Alexander, Nat. Photonics. 4, 780 (2010)ADSCrossRefGoogle Scholar
  8. 8.
    T.A. Planchon, L. Gao, D.E. Milkie, M.W. Davidson, J.A. Galbraith, C.G. Galbraith, E. Betzig, Nat. Methods. 8, 417 (2011)CrossRefGoogle Scholar
  9. 9.
    M.V. Berry, N.L. Balazs, Am. J. Phys. 47, 264 (1979)ADSCrossRefGoogle Scholar
  10. 10.
    M.A. Bandres, J.C. Gutiérrez-Vega, Opt. Express. 15, 16719 (2007)ADSCrossRefGoogle Scholar
  11. 11.
    C.D. Chen, B. Chen, X. Peng, D.M. Deng, J. Opt. 17, 035504 (2015)ADSCrossRefGoogle Scholar
  12. 12.
    X.P. Zhang, Opt. Commun. 367, 364 (2016)ADSCrossRefGoogle Scholar
  13. 13.
    W.J. Chen, K.Q. Lu, J.L. Hui, B.J. Zhang, Acta Phys. Sin. 65, 244202 (2016)Google Scholar
  14. 14.
    D.M. Deng, C.D. Chen, X. Zhao, H.G. Li, Appl. Phys. B. 110, 433 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    K. Cheng, X.Q. Zhong, A.P. Xiang, Opt. Laser Technol. 57, 77 (2014)ADSCrossRefGoogle Scholar
  16. 16.
    J.G. Grossman, L.W. Casperson, O.M. Stafsudd, L.V. Sutter, Appl. Opt. 23, 48 (1984)ADSCrossRefGoogle Scholar
  17. 17.
    W. Wen, K.H. Song, Y.M. Dong, M. Yao, Opt. Laser Technol. 48, 28 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    A.A.A. Ebrahim, L. Ez-zariy, M. Boustimi, A. Chafiq, H. Nebdi, A. Belafhal, Phys. Chem. News. 73, 21 (2014)Google Scholar
  19. 19.
    J. Yu, S.L. Xiao, L. Yao, S.Y. Liu, J. Li, J. Mod. Opt. 64, 616 (2017)ADSCrossRefGoogle Scholar
  20. 20.
    P. Zhang, J. Prakash, Z. Zhang, M.S. Mills, N.K. Efremidis, D.N. Christodoulides, Z.G. Chen, Opt. Lett. 36, 2883 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    Z.Y. Zhao, W.P. Zang, J.J. Tian, J. Opt. 18, 025607 (2016)ADSCrossRefGoogle Scholar
  22. 22.
    Y.L. Gu, G. Gbur, Opt. Lett. 35, 3456 (2010)ADSCrossRefGoogle Scholar
  23. 23.
    J.S. Liu, K.Q. Lu, J. Opt. Soc. Am. B. 16, 550 (1999)CrossRefGoogle Scholar
  24. 24.
    Q.C. Jiang, Y.L. Su, X.M. Ji, Opt. Commun. 283, 3512 (2010)ADSCrossRefGoogle Scholar
  25. 25.
    Q.C. Jiang, Y.L. Su, H.X. Nie, Z.W. Ma, Y.H. Li, J. Mod. Opt. 64, 609 (2017)ADSCrossRefGoogle Scholar
  26. 26.
    Y.Q. Zhang, M. Belic, Z.K. Wu, H.B. Zheng, K.Q. Lu, Y.Y. Li, Y. P. Opt. Lett. 38, 4585 (2013)ADSCrossRefGoogle Scholar
  27. 27.
    M.L. Zhong, Y.L. Peng, C.D. Chen, B. Chen, X. Peng, D.M. Deng, Chin. Phys. B. 25, 084102 (2016)ADSCrossRefGoogle Scholar
  28. 28.
    Z.G. Chen, M. Segev, T.H. Coskun, J. Opt. Soc. Am. B. 14, 3066 (1997)ADSCrossRefGoogle Scholar
  29. 29.
    W.L. She, C.C. Xu, B. Guo, W.K. Lee, J. Opt. Soc. Am. B. 23, 2121 (2006)ADSCrossRefGoogle Scholar
  30. 30.
    S. Jia, J. Lee, J.W. Fleischer, Phys. Rev. Lett. 104, 253904 (2010)ADSCrossRefGoogle Scholar
  31. 31.
    Y. Hu, Z. Sun, D. Bongiovanni, D.H. Song, C.B. Lou, J.J. Xu, Z.G. Chen, R. Morandotti, Opt. Lett. 37, 3201 (2012)ADSCrossRefGoogle Scholar
  32. 32.
    F. Diebel, B.M. Bokić, D.V. Timotijević, D.M. Jović Savić, C. Denz, Opt. Express. 23, 24351 (2015)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physics and Electronic EngineeringYuncheng UniversityYunchengChina

Personalised recommendations