Skip to main content
Log in

High-sensitivity 308.6-nm laser absorption diagnostic optimized for OH measurement in shock tube combustion studies

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We report the development of a high-sensitivity laser absorption diagnostic optimized for measurement of the hydroxyl radical (OH) at temperatures relevant to combustion studies, and demonstrated here in shock tube experiments. This diagnostic utilizes a narrow-linewidth CW UV laser that is tunable over the A2Σ – X2Π (0,0) band of the OH rovibronic transitions. First, we identified the strongest absorption transition of OH, over the current temperature range of interest, to be the Q1(5) transition near 308.61 nm. We then measured the OH absorption coefficients behind reflected shock waves over temperatures of 1656–2993 K and pressures of 0.88–4.09 atm, and determined the pressure-broadening and pressure-shifting coefficients in argon bath gas. Compared to the previous diagnostic targeting the OH R1(5) transition, the current diagnostic has approximately 2.2 times the sensitivity. Finally, we demonstrated the excellent sensitivity of the current OH diagnostic in a set of highly-diluted C3H8 oxidation experiments in a shock tube, where a 1 − σ detection limit of less than 0.15 ppm OH was successfully achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. G. Kychakoff, R.D. Howe, R.K. Hanson, J.C. McDaniel, Quantitative visualization of combustion species in a plane. Appl. Opt. 21, 3225–3227 (1982)

    Article  ADS  Google Scholar 

  2. M.J. Dyer, D.R. Crosley, Two-dimensional imaging of OH laser-induced fluorescence in a flame. Opt. Lett. 7, 382–384 (1982)

    Article  ADS  Google Scholar 

  3. R. Suntz, H. Becker, P. Monkhouse, J. Wolfrum, Two-dimensional visualization of the flame front in an internal combustion engine by laser-induced fluorescence of OH radicals. Appl. Phys. B. 47, 287–293 (1988)

    Article  ADS  Google Scholar 

  4. C.F. Kaminski, J. Hult, M. Aldén, High repetition rate planar laser induced fluorescence of OH in a turbulent non-premixed flame. Appl. Phys. B. 68, 757–760 (1999)

    Article  ADS  Google Scholar 

  5. K. Kohse-Höinghaus, U. Meier, B. Attal-Trétout, Laser-induced fluorescence study of OH in flat flames of 1–10 bar compared with resonance CARS experiments. Appl. Opt. 29, 1560–1569 (1990)

    Article  ADS  Google Scholar 

  6. P. Andresen, G. Meijer, H. Schlüter, H. Voges, A. Koch, W. Hentschel, W. Oppermann, E. Rothe, Fluorescence imaging inside an internal combustion engine using tunable excimer lasers. Appl. Opt. 29, 2392–2404 (1990)

    Article  ADS  Google Scholar 

  7. S. Singh, M.P. Musculus, R.D. Reitz, Mixing and flame structures inferred from OH-PLIF for conventional and low-temperature diesel engine combustion. Combust. Flame. 156, 1898–1908 (2009)

    Article  Google Scholar 

  8. A.G. Gaydon,: The Spectroscopy of Flames (2nd edn.) (Wiley, New York, 1974)

    Book  Google Scholar 

  9. J.P. Maillard, J. Chauville, A.W. Mantz, High-resolution emission spectrum of OH in an oxyacetylene flame from 3.7 to 0.9 µm. J. Mol. Spectrosc. 63, 120–141 (1976)

    Article  ADS  Google Scholar 

  10. J. Luque, J.B. Jeffries, G.P. Smith, D.R. Crosley, K.T. Walsh, M.B. Long, M.D. Smooke, CH(A-X) and OH(A-X) optical emission in an axisymmetric laminar diffusion flame. Combust. Flame. 122, 172–175 (2000)

    Article  Google Scholar 

  11. J. Kojima, Y. Ikeda, T. Nakajima, Spatially resolved measurement of OH*, CH*, and C2* chemiluminescence in the reaction zone of laminar methane/air premixed flames. Proc. Combust. Inst. 28, 1757–1764 (2000)

    Article  Google Scholar 

  12. B. Higgins, M.Q. McQuay, F. Lacas, J.C. Rolon, N. Darabiha, S. Candel, Systematic measurements of OH chemiluminescence for fuel-lean, high-pressure, premixed, laminar flames. Fuel. 80, 67–74 (2001)

    Article  Google Scholar 

  13. M. De Leo, A. Saveliev, L.A. Kennedy, S.A. Zelepouga, OH and CH luminescence in opposed flow methane oxy-flames. Combust. Flame. 149, 435–447 (2007)

    Article  Google Scholar 

  14. B.L. Upschulte, D.M. Sonnenfroh, M.G. Allen, Measurements of CO, CO2, OH, and H2O in room-temperature and combustion gases by use of a broadly current-tuned multisection InGaAsP diode laser. Appl. Opt. 38, 1506–1512 (1999)

    Article  ADS  Google Scholar 

  15. T. Aizawa, Diode-laser wavelength-modulation absorption spectroscopy for quantitative in situ measurements of temperature and OH radical concentration in combustion gases. Appl. Opt. 40, 4894–4903 (2001)

    Article  ADS  Google Scholar 

  16. R.K. Hanson, S. Salimian, G. Kychakoff, R.A. Booman, Shock-tube absorption measurements of OH using a remotely located dye laser. Appl. Opt. 22, 641–643 (1983)

    Article  ADS  Google Scholar 

  17. E.C. Rea, S. Salimian, R.K. Hanson, Rapid-tuning frequency-doubled ring dye laser for high resolution absorption spectroscopy in shock-heated gases. Appl. Opt. 23, 1691–1694 (1984)

    Article  ADS  Google Scholar 

  18. M.A. Oehlschlaeger, D.F. Davidson, J.T. Herbon, R.K. Hanson, Shock tube measurements of branched alkane ignition times and OH concentration time histories. Int. J. Chem. Kinet. 36, 67–78 (2004)

    Article  Google Scholar 

  19. V. Vasudevan, D.F. Davidson, R.K. Hanson, Shock tube measurements of toluene ignition times and OH concentration time histories. Proc. Combust. Inst. 30, 1155–1163 (2005)

    Article  Google Scholar 

  20. S.S. Vasu, D.F. Davidson, Z. Hong, V. Vasudevan, R.K. Hanson, n-Dodecane oxidation at high-pressures: Measurements of ignition delay times and OH concentration time-histories. Proc. Combust. Inst. 32, 173–180 (2009)

    Article  Google Scholar 

  21. R. Sivaramakrishnan, J.V. Michael, Rate constants for OH with selected large alkanes: shock-tube measurements and an improved group scheme. J. Phys. Chem. A. 113, 5047–5060 (2009)

    Article  Google Scholar 

  22. J. Badra, A.E. Elwardany, F. Khaled, S.S. Vasu, A. Farooq, A shock tube and laser absorption study of ignition delay times and OH reaction rates of ketones: 2-Butanone and 3-buten-2-one. Combust. Flame. 161, 725–734 (2014)

    Article  Google Scholar 

  23. J. Badra, A. Elwardany, A. Farooq, Shock tube measurements of the rate constants for seven large alkanes + OH. Proc. Combust. Inst. 35, 189–196 (2015)

    Article  Google Scholar 

  24. S. Wang, D.F. Davidson, R.K. Hanson, High temperature measurements for the rate constants of C1–C4 aldehydes with OH in a shock tube. Proc. Combust. Inst. 35, 473–480 (2015)

    Article  Google Scholar 

  25. S. Wang, D.F. Davidson, R.K. Hanson, Rate constants of long, branched, and unsaturated aldehydes with OH at elevated temperatures. Proc. Combust. Inst. 36, 151–160 (2017)

    Article  Google Scholar 

  26. I.E. Gordon, L.S. Rothman, C. Hill, R.V. Kochanov, Y. Tan, P.F. Bernath, M. Birk, V. Boudon, The HITRAN2016 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transfer. (2017). https://doi.org/10.1016/j.jqsrt.2017.06.038 (in press)

    Google Scholar 

  27. D.F. Davidson, M. Roehrig, E.L. Petersen, M.D. Di Rosa, R.K. Hanson, Measurements of the OH AX (0, 0) 306 nm Absorption Bandhead at 60 atm and 1735 K. J. Quant. Spectrosc. Radiat. Transfer. 55, 755–762 (1996)

    Article  ADS  Google Scholar 

  28. A.Y. Chang, E.C. Rea, R.K. Hanson, Temperature measurements in shock tubes using a laser-based absorption technique. Appl. Opt. 26, 885–891 (1987)

    Article  ADS  Google Scholar 

  29. E.C. Rea, A.Y. Chang, R.K. Hanson, Shock-tube study of pressure broadening of the A 2+ − X 2Π (0, 0) band of OH by Ar and N2. J. Quant. Spectrosc. Radiat. Transfer. 37, 117–127 (1987)

    Article  ADS  Google Scholar 

  30. A. Goldman, J.R. Gillis, Spectral line parameters for the A 2∑ − X 2Π (0, 0) band of OH for atmospheric and high temperatures. J. Quant. Spectrosc. Radiat. Transfer. 25, 111–135 (1981)

    Article  ADS  Google Scholar 

  31. J. Luque, D.R. Crosley, LIFBASE: Database and Spectral Simulation Program (Version 1.5), SRI International Report MP 99-009 (1999)

  32. A. Goldman, Line parameters for the atmospheric band system of OH. Appl. Opt. 21, 2100–2102 (1982)

    Article  ADS  Google Scholar 

  33. I.L. Chidsey, D.R. Crosley, Calculated rotational transition probabilities for the AX system of OH. J. Quant. Spectrosc. Radiat. Transfer. 23, 187–199 (1980)

    Article  ADS  Google Scholar 

  34. K.R. German, Direct measurement of the radiative lifetimes of the A 2Σ+(V′ = 0) states of OH and OD. J. Chem. Phys. 62, 2584–2587 (1975)

    Article  ADS  Google Scholar 

  35. S. Wang, E.E. Dames, D.F. Davidson, R.K. Hanson, Reaction rate constant of CH2O + H = HCO + H2 revisited: A combined study of direct shock tube measurement and transition state theory calculation.” J. Phys. Chem. A. 118, 10201–10209 (2014)

    Article  Google Scholar 

  36. S. Wang, K. Sun, D.F. Davidson, J.B. Jeffries, R.K. Hanson, Shock-tube measurement of acetone dissociation using cavity-enhanced absorption spectroscopy of CO. J. Phys. Chem. A. 119, 7257–7262 (2015)

    Article  Google Scholar 

  37. J.T. Herbon: Shock tube measurements of CH3 + O2 kinetics and the heat of formation of the OH radical, (Ph.D. Dissertation, Stanford University, 2004)

  38. Y. Li, C.W. Zhou, K.P. Somers, K. Zhang, H.J. Curran, The oxidation of 2-butene: A high pressure ignition delay, kinetic modeling study and reactivity comparison with isobutene and 1-butene. Proc. Combust. Inst. 36, 403–411 (2017)

    Article  Google Scholar 

  39. H. Wang, X. You, A.V. Joshi, S.G. Davis, A. Laskin, F. Egolfopoulos, C.K. Law, USC Mech version II. http://ignis.usc.edu/USC_Mech_II.htm (2007)

  40. J. Li, Z. Zhao, A. Kazakov, F.L. Dryer, An updated comprehensive kinetic model of hydrogen combustion. Int. J. Chem. Kinet. 36, 566–575 (2004)

    Article  Google Scholar 

  41. P.R. Berman, Speed-dependent collisional width and shift parameters in spectral profiles. J. Quant. Spectrosc. Radiat. Transfer. 12, 1331–1342 (1972)

    Article  ADS  Google Scholar 

  42. P.L. Varghese, R.K. Hanson, Collisional narrowing effects on spectral line shapes measured at high resolution. Appl. Opt. 23, 2376–2385 (1984)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Air Force Office of Scientific Research through AFOSR Grant No. FA9550-14-1-0235, with Dr. Chiping Li as contract monitor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengkai Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Hanson, R.K. High-sensitivity 308.6-nm laser absorption diagnostic optimized for OH measurement in shock tube combustion studies. Appl. Phys. B 124, 37 (2018). https://doi.org/10.1007/s00340-018-6902-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-018-6902-4

Navigation