Applied Physics B

, 124:37 | Cite as

High-sensitivity 308.6-nm laser absorption diagnostic optimized for OH measurement in shock tube combustion studies

  • Shengkai WangEmail author
  • Ronald K. Hanson


We report the development of a high-sensitivity laser absorption diagnostic optimized for measurement of the hydroxyl radical (OH) at temperatures relevant to combustion studies, and demonstrated here in shock tube experiments. This diagnostic utilizes a narrow-linewidth CW UV laser that is tunable over the A2Σ – X2Π (0,0) band of the OH rovibronic transitions. First, we identified the strongest absorption transition of OH, over the current temperature range of interest, to be the Q1(5) transition near 308.61 nm. We then measured the OH absorption coefficients behind reflected shock waves over temperatures of 1656–2993 K and pressures of 0.88–4.09 atm, and determined the pressure-broadening and pressure-shifting coefficients in argon bath gas. Compared to the previous diagnostic targeting the OH R1(5) transition, the current diagnostic has approximately 2.2 times the sensitivity. Finally, we demonstrated the excellent sensitivity of the current OH diagnostic in a set of highly-diluted C3H8 oxidation experiments in a shock tube, where a 1 − σ detection limit of less than 0.15 ppm OH was successfully achieved.



This work was supported by the Air Force Office of Scientific Research through AFOSR Grant No. FA9550-14-1-0235, with Dr. Chiping Li as contract monitor.


  1. 1.
    G. Kychakoff, R.D. Howe, R.K. Hanson, J.C. McDaniel, Quantitative visualization of combustion species in a plane. Appl. Opt. 21, 3225–3227 (1982)ADSCrossRefGoogle Scholar
  2. 2.
    M.J. Dyer, D.R. Crosley, Two-dimensional imaging of OH laser-induced fluorescence in a flame. Opt. Lett. 7, 382–384 (1982)ADSCrossRefGoogle Scholar
  3. 3.
    R. Suntz, H. Becker, P. Monkhouse, J. Wolfrum, Two-dimensional visualization of the flame front in an internal combustion engine by laser-induced fluorescence of OH radicals. Appl. Phys. B. 47, 287–293 (1988)ADSCrossRefGoogle Scholar
  4. 4.
    C.F. Kaminski, J. Hult, M. Aldén, High repetition rate planar laser induced fluorescence of OH in a turbulent non-premixed flame. Appl. Phys. B. 68, 757–760 (1999)ADSCrossRefGoogle Scholar
  5. 5.
    K. Kohse-Höinghaus, U. Meier, B. Attal-Trétout, Laser-induced fluorescence study of OH in flat flames of 1–10 bar compared with resonance CARS experiments. Appl. Opt. 29, 1560–1569 (1990)ADSCrossRefGoogle Scholar
  6. 6.
    P. Andresen, G. Meijer, H. Schlüter, H. Voges, A. Koch, W. Hentschel, W. Oppermann, E. Rothe, Fluorescence imaging inside an internal combustion engine using tunable excimer lasers. Appl. Opt. 29, 2392–2404 (1990)ADSCrossRefGoogle Scholar
  7. 7.
    S. Singh, M.P. Musculus, R.D. Reitz, Mixing and flame structures inferred from OH-PLIF for conventional and low-temperature diesel engine combustion. Combust. Flame. 156, 1898–1908 (2009)CrossRefGoogle Scholar
  8. 8.
    A.G. Gaydon,: The Spectroscopy of Flames (2nd edn.) (Wiley, New York, 1974)CrossRefGoogle Scholar
  9. 9.
    J.P. Maillard, J. Chauville, A.W. Mantz, High-resolution emission spectrum of OH in an oxyacetylene flame from 3.7 to 0.9 µm. J. Mol. Spectrosc. 63, 120–141 (1976)ADSCrossRefGoogle Scholar
  10. 10.
    J. Luque, J.B. Jeffries, G.P. Smith, D.R. Crosley, K.T. Walsh, M.B. Long, M.D. Smooke, CH(A-X) and OH(A-X) optical emission in an axisymmetric laminar diffusion flame. Combust. Flame. 122, 172–175 (2000)CrossRefGoogle Scholar
  11. 11.
    J. Kojima, Y. Ikeda, T. Nakajima, Spatially resolved measurement of OH*, CH*, and C2* chemiluminescence in the reaction zone of laminar methane/air premixed flames. Proc. Combust. Inst. 28, 1757–1764 (2000)CrossRefGoogle Scholar
  12. 12.
    B. Higgins, M.Q. McQuay, F. Lacas, J.C. Rolon, N. Darabiha, S. Candel, Systematic measurements of OH chemiluminescence for fuel-lean, high-pressure, premixed, laminar flames. Fuel. 80, 67–74 (2001)CrossRefGoogle Scholar
  13. 13.
    M. De Leo, A. Saveliev, L.A. Kennedy, S.A. Zelepouga, OH and CH luminescence in opposed flow methane oxy-flames. Combust. Flame. 149, 435–447 (2007)CrossRefGoogle Scholar
  14. 14.
    B.L. Upschulte, D.M. Sonnenfroh, M.G. Allen, Measurements of CO, CO2, OH, and H2O in room-temperature and combustion gases by use of a broadly current-tuned multisection InGaAsP diode laser. Appl. Opt. 38, 1506–1512 (1999)ADSCrossRefGoogle Scholar
  15. 15.
    T. Aizawa, Diode-laser wavelength-modulation absorption spectroscopy for quantitative in situ measurements of temperature and OH radical concentration in combustion gases. Appl. Opt. 40, 4894–4903 (2001)ADSCrossRefGoogle Scholar
  16. 16.
    R.K. Hanson, S. Salimian, G. Kychakoff, R.A. Booman, Shock-tube absorption measurements of OH using a remotely located dye laser. Appl. Opt. 22, 641–643 (1983)ADSCrossRefGoogle Scholar
  17. 17.
    E.C. Rea, S. Salimian, R.K. Hanson, Rapid-tuning frequency-doubled ring dye laser for high resolution absorption spectroscopy in shock-heated gases. Appl. Opt. 23, 1691–1694 (1984)ADSCrossRefGoogle Scholar
  18. 18.
    M.A. Oehlschlaeger, D.F. Davidson, J.T. Herbon, R.K. Hanson, Shock tube measurements of branched alkane ignition times and OH concentration time histories. Int. J. Chem. Kinet. 36, 67–78 (2004)CrossRefGoogle Scholar
  19. 19.
    V. Vasudevan, D.F. Davidson, R.K. Hanson, Shock tube measurements of toluene ignition times and OH concentration time histories. Proc. Combust. Inst. 30, 1155–1163 (2005)CrossRefGoogle Scholar
  20. 20.
    S.S. Vasu, D.F. Davidson, Z. Hong, V. Vasudevan, R.K. Hanson, n-Dodecane oxidation at high-pressures: Measurements of ignition delay times and OH concentration time-histories. Proc. Combust. Inst. 32, 173–180 (2009)CrossRefGoogle Scholar
  21. 21.
    R. Sivaramakrishnan, J.V. Michael, Rate constants for OH with selected large alkanes: shock-tube measurements and an improved group scheme. J. Phys. Chem. A. 113, 5047–5060 (2009)CrossRefGoogle Scholar
  22. 22.
    J. Badra, A.E. Elwardany, F. Khaled, S.S. Vasu, A. Farooq, A shock tube and laser absorption study of ignition delay times and OH reaction rates of ketones: 2-Butanone and 3-buten-2-one. Combust. Flame. 161, 725–734 (2014)CrossRefGoogle Scholar
  23. 23.
    J. Badra, A. Elwardany, A. Farooq, Shock tube measurements of the rate constants for seven large alkanes + OH. Proc. Combust. Inst. 35, 189–196 (2015)CrossRefGoogle Scholar
  24. 24.
    S. Wang, D.F. Davidson, R.K. Hanson, High temperature measurements for the rate constants of C1–C4 aldehydes with OH in a shock tube. Proc. Combust. Inst. 35, 473–480 (2015)CrossRefGoogle Scholar
  25. 25.
    S. Wang, D.F. Davidson, R.K. Hanson, Rate constants of long, branched, and unsaturated aldehydes with OH at elevated temperatures. Proc. Combust. Inst. 36, 151–160 (2017)CrossRefGoogle Scholar
  26. 26.
    I.E. Gordon, L.S. Rothman, C. Hill, R.V. Kochanov, Y. Tan, P.F. Bernath, M. Birk, V. Boudon, The HITRAN2016 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transfer. (2017). (in press) Google Scholar
  27. 27.
    D.F. Davidson, M. Roehrig, E.L. Petersen, M.D. Di Rosa, R.K. Hanson, Measurements of the OH AX (0, 0) 306 nm Absorption Bandhead at 60 atm and 1735 K. J. Quant. Spectrosc. Radiat. Transfer. 55, 755–762 (1996)ADSCrossRefGoogle Scholar
  28. 28.
    A.Y. Chang, E.C. Rea, R.K. Hanson, Temperature measurements in shock tubes using a laser-based absorption technique. Appl. Opt. 26, 885–891 (1987)ADSCrossRefGoogle Scholar
  29. 29.
    E.C. Rea, A.Y. Chang, R.K. Hanson, Shock-tube study of pressure broadening of the A 2+ − X 2Π (0, 0) band of OH by Ar and N2. J. Quant. Spectrosc. Radiat. Transfer. 37, 117–127 (1987)ADSCrossRefGoogle Scholar
  30. 30.
    A. Goldman, J.R. Gillis, Spectral line parameters for the A 2∑ − X 2Π (0, 0) band of OH for atmospheric and high temperatures. J. Quant. Spectrosc. Radiat. Transfer. 25, 111–135 (1981)ADSCrossRefGoogle Scholar
  31. 31.
    J. Luque, D.R. Crosley, LIFBASE: Database and Spectral Simulation Program (Version 1.5), SRI International Report MP 99-009 (1999)Google Scholar
  32. 32.
    A. Goldman, Line parameters for the atmospheric band system of OH. Appl. Opt. 21, 2100–2102 (1982)ADSCrossRefGoogle Scholar
  33. 33.
    I.L. Chidsey, D.R. Crosley, Calculated rotational transition probabilities for the AX system of OH. J. Quant. Spectrosc. Radiat. Transfer. 23, 187–199 (1980)ADSCrossRefGoogle Scholar
  34. 34.
    K.R. German, Direct measurement of the radiative lifetimes of the A 2Σ+(V′ = 0) states of OH and OD. J. Chem. Phys. 62, 2584–2587 (1975)ADSCrossRefGoogle Scholar
  35. 35.
    S. Wang, E.E. Dames, D.F. Davidson, R.K. Hanson, Reaction rate constant of CH2O + H = HCO + H2 revisited: A combined study of direct shock tube measurement and transition state theory calculation.” J. Phys. Chem. A. 118, 10201–10209 (2014)CrossRefGoogle Scholar
  36. 36.
    S. Wang, K. Sun, D.F. Davidson, J.B. Jeffries, R.K. Hanson, Shock-tube measurement of acetone dissociation using cavity-enhanced absorption spectroscopy of CO. J. Phys. Chem. A. 119, 7257–7262 (2015)CrossRefGoogle Scholar
  37. 37.
    J.T. Herbon: Shock tube measurements of CH3 + O2 kinetics and the heat of formation of the OH radical, (Ph.D. Dissertation, Stanford University, 2004)Google Scholar
  38. 38.
    Y. Li, C.W. Zhou, K.P. Somers, K. Zhang, H.J. Curran, The oxidation of 2-butene: A high pressure ignition delay, kinetic modeling study and reactivity comparison with isobutene and 1-butene. Proc. Combust. Inst. 36, 403–411 (2017)CrossRefGoogle Scholar
  39. 39.
    H. Wang, X. You, A.V. Joshi, S.G. Davis, A. Laskin, F. Egolfopoulos, C.K. Law, USC Mech version II. (2007)
  40. 40.
    J. Li, Z. Zhao, A. Kazakov, F.L. Dryer, An updated comprehensive kinetic model of hydrogen combustion. Int. J. Chem. Kinet. 36, 566–575 (2004)CrossRefGoogle Scholar
  41. 41.
    P.R. Berman, Speed-dependent collisional width and shift parameters in spectral profiles. J. Quant. Spectrosc. Radiat. Transfer. 12, 1331–1342 (1972)ADSCrossRefGoogle Scholar
  42. 42.
    P.L. Varghese, R.K. Hanson, Collisional narrowing effects on spectral line shapes measured at high resolution. Appl. Opt. 23, 2376–2385 (1984)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.High Temperature Gasdynamics LaboratoryStanford UniversityStanfordUSA

Personalised recommendations