Skip to main content
Log in

Characterization of strongly scattering nanoporous materials as miniaturized multipass cell for tunable diode laser absorption spectroscopy

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Through the confinement of gas in nanoporous materials, it is possible to significantly increase the path length for light–gas interaction. This enables the observation of much stronger absorption features for the confined gas molecules. In this work, we systematically characterized a variety of disordered strongly scattering ZrO\(_2\) and Al\(_2\)O\(_3\) nanoporous ceramic materials to exploit the potential of gas in scattering media absorption spectroscopy. As a result, we identified a material with an unprecedented performance in terms of optical path length enhancement. In ZrO\(_2\) with thicknesses above 6 mm, the path enhancement exceeds 1000. The results obtained with near-infrared absorption spectroscopy on oxygen were validated by time-of-flight measurements at 700 nm, thus demonstrating their robustness. Finally, we report quantitative oxygen concentration measurement using nanoporous materials as miniaturized random-scattering multipass cell with an extremely simple and low-cost setup.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. J.U. White, J. Opt. Soc. Am. 32, 285–288 (1942)

    Article  ADS  Google Scholar 

  2. D.R. Herriott, H.J. Schulte, Appl. Opt. 4, 883–889 (1965)

    Article  ADS  Google Scholar 

  3. W.S. Dalton, H. Sakai, Appl. Opt. 19, 2413–2415 (1980)

    Article  ADS  Google Scholar 

  4. A. Manninen, B. Tuzson, H. Looser, Y. Bonetti, L. Emmenegger, Appl. Phys. B 109, 461–466 (2012)

    Article  ADS  Google Scholar 

  5. J. Hodgkinson, D. Masiyano, R.P. Tatam, Appl. Phys. B 100, 291–302 (2010)

    Article  ADS  Google Scholar 

  6. D. Masiyano, J. Hodgkinson, R.P. Tatam, Appl. Phys. B 100, 303–12 (2010)

    Article  ADS  Google Scholar 

  7. J. Chen, A. Hangauer, R. Strzoda, M.C. Amann, Appl. Opt. 49(28), 5254–5261 (2010)

    Article  ADS  Google Scholar 

  8. G. Fetzer, A. Pittner, W. Ryder, D. Brown, Appl. Opt. 41, 3613–3621 (2002)

    Article  ADS  Google Scholar 

  9. M. Sjholm, G. Somesfalean, J. Alnis, S. Andersson-Engels, S. Svanberg, Opt. Lett. 26, 16–18 (2001)

    Article  ADS  Google Scholar 

  10. Y.N. Ponomarev, T.M. Petrova, A.M. Solodov, A.A. Solodov, Opt. Express 18(25), 26062 (2010)

    Article  ADS  Google Scholar 

  11. T. Svensson, E. Adolfsson, M. Lewander, C.T. Xu, S. Svanberg, Phys. Rev. Lett. 107, 143901 (2011)

    Article  ADS  Google Scholar 

  12. J.V. Auwera, N.H. Ngo, H. El Hamzaoui, B. Capoen, M. Bouazaoui, P. Ausset, C. Boulet, J.-M. Hartmann, Phys. Rev. Lett. A 88, 042506 (2013)

    Article  ADS  Google Scholar 

  13. Y. Ding, H. Lin, C. Yan, in Asia Communications and Photonics Conference 2014, OSA Technical Digest (online), paper ATh3A.190 (2014)

  14. L. Yang, G. Somesfalean, S. He, Opt. Express 22(3), 2584 (2014)

    Article  ADS  Google Scholar 

  15. G. Somesfalean, M. Sjholm, J. Alnis, C. af Klinteberg, S. Andersson-Engels, S. Svanberg, Appl. Opt. 41(18), 3538–3544 (2002)

    Article  ADS  Google Scholar 

  16. T. Svensson, Z. Shen, Appl. Phys. Lett. 96, 021107 (2010)

    Article  ADS  Google Scholar 

  17. M. Danos, S. Geschwind, Phys. Rev. 91(5), 1159–1162 (1953)

    Article  ADS  Google Scholar 

  18. J.-M. Hartmann, V. Sironneau, T. Svensson, J.T. Hodges, C.T. Xu, Phys. Rev. A 87, 032510 (2013)

    Article  ADS  Google Scholar 

  19. C.T. Xu, M. Lewander, S. Andersson-Engels, E. Adolfsson, T. Svensson, S. Svanberg, Phys. Rev. A 84, 042705 (2011)

    Article  ADS  Google Scholar 

  20. T. Svensson, M. Andersson, L. Rippe, S. Svanberg, S. Andersson-Engels, J. Johansson, S. Folestad, Appl. Phys. B 90, 345–354 (2008)

    Article  ADS  Google Scholar 

  21. L. Mei, P. Lundin, S. Andersson-Engels, S. Svanberg, G. Somesfalean, Appl. Phys. B 109, 467–475 (2012)

    Article  ADS  Google Scholar 

  22. L. Mei, G. Somesfalean, S. Svanberg, Appl. Phys. A 114, 393–400 (2014)

    Article  ADS  Google Scholar 

  23. T. Svensson, E. Alerstam, E. Johansson, S. Andersson-Engels, Opt. Lett. 35(11), 1740–1742 (2010)

    Article  ADS  Google Scholar 

  24. I.M. Vellekoop, P. Lodahl, A. Lagendijk, Phys. Rev. E 71, 056604 (2005)

    Article  ADS  Google Scholar 

  25. D.J. Durian, Phys. Rev. E 50(2), 857–866 (1994)

    Article  ADS  Google Scholar 

  26. P.M. Johnson, A. Imhof, B.P.J. Bret, J.G. Rivas, A. Lagendijk, Phys. Rev. E 68, 016604 (2003)

    Article  ADS  Google Scholar 

  27. M.C.W. van Rossum, T.M. Nieuwenhuizen, Rev. Mod. Phys. 71(1), 313–371 (1999)

    Article  ADS  Google Scholar 

  28. T. Svensson, M. Lewander, S. Svanberg, Opt. Express 18, 16460 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Venturini.

Additional information

This article is part of the topical collection “Field Laser Applications in Industry and Research” guest edited by Francesco D’Amato, Erik Kerstel, and Alan Fried.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Venturini, F., Schönherr, V., Rey, J.M. et al. Characterization of strongly scattering nanoporous materials as miniaturized multipass cell for tunable diode laser absorption spectroscopy. Appl. Phys. B 123, 136 (2017). https://doi.org/10.1007/s00340-017-6705-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-017-6705-z

Keywords

Navigation