Applied Physics B

, 123:64 | Cite as

Upconversion photon quantification of holmium and erbium ions in waveguide-adaptive germanate glasses

Article

Abstract

Visible upconversion photons have been quantified precisely in Ho3+/Yb3+ and Er3+/Yb3+ doped waveguide-adaptive aluminum germanate (NMAG) glasses, and effective red and green upconversion emissions generated from Ho3+ and Er3+ were illustrated in contrast. The emission photon numbers are identified as a positive correlation with the laser power densities, and stronger dominance of red emission in the Ho3+/Yb3+ doped NMAG glasses and more effectiveness of photon generation in Er3+/Yb3+ doped case were proved. When the power density is 1227 W/cm2, the absolute quantum yields for red and green (660 and 548 nm) upconversion fluorescences are derived to be 2.41 × 10−5 and 0.17 × 10−5 in Ho3+/Yb3+ doped NMAG glasses, and the ones (665 and 548 nm) in Er3+/Yb3+ doped NMAG glasses are 4.26 × 10−5 and 1.44 × 10−5. The macroscopic quantization of red and green upconversion emissions in Ho3+/Yb3+ and Er3+/Yb3+ doped waveguide-adaptive NMAG glasses provides the original referenced data for developing upconversion waveguide-typed irradiation light sources.

Keywords

Upconversion fluorescence Photon quantification Germanate glasses Holmium and erbium ions Quantum yield 

Notes

Acknowledgements

This work is supported by the National Natural Science Foundation of China (NSFC) (61275057) and the Natural Science Foundation of Liaoning Province (2015020179).

References

  1. 1.
    Y. Song, J.V. Dyke, I.K. Lum, B.D. White, S. Jang, D. Yazici, L. Shu, A. Schneidewind, P. Čermák, Y. Qiu, M.B. Maple, D.K. Morr, P.C. Dai, Robust upward dispersion of the neutron spin resonance in the heavy fermion superconductor Ce1–xYbxCoIn5. Nat. Commun (2016)Google Scholar
  2. 2.
    K. Pavani, J. Suresh Kumar, T. Sasikala, B.C. Jamalaiah, H.J. Seo, L. Rama Moorthy, Luminescent characteristics of Dy3+ doped strontium magnesium aluminate phosphor for white LEDs. Mater. Chem. Phys 129(1–2), 292–295 (2011)CrossRefGoogle Scholar
  3. 3.
    A. Pandey, V. Kumar, R.E. Kroona, H.C. Swart, Temperature induced upconversion behaviour of Ho3+-Yb3+ codoped yttrium oxide films prepared by pulsed laser deposition. J. Alloy. Compd 672, 190–196 (2016)CrossRefGoogle Scholar
  4. 4.
    M.E. Camilo, T.A.A. Assumpcao, D.M.D. Silva, D.S.D. Silva, Influence of silver nanoparticles on the infrared-to-visible frequency upconversion in Tm3+/Er3+/Yb3+ doped GeO2-PbO glass. J. Appl. Phys 113(15), 153507 (2013)ADSCrossRefGoogle Scholar
  5. 5.
    H. Canogarcia, P. Kosmas, I. Sotiriou, I. Papadopouloskelidis, C. Parini, I. Ioannis Gouzouasis, G. Palikaras, E. Kallos, Detection of glucose variability in saline solutions from transmission and reflection measurements using V-band waveguides. Meas. Sci. Technol 26, 125701–125710 (2015)ADSCrossRefGoogle Scholar
  6. 6.
    W. Fan, W. Bu, J. Shi, On the latest three-stage development of nanomedicines based on upconversion nanoparticles. Adv. Mater 28(21), 3987–4011 (2016)CrossRefGoogle Scholar
  7. 7.
    Q.Y. Shao, X.S. Li, P.Y. Hua, G.T. Zhang, Y. Dong, J.Q. Jiang, Enhancing the upconversion luminescence and photothermal conversion properties of ∼800 nm excitable core/shell nanoparticles by dye molecule sensitization. J. Colloid Interf. Sci 486, 121–127 (2016)CrossRefGoogle Scholar
  8. 8.
    S.D. Jackson, Towards high-power mid-infrared emission from a fibre laser. Nat. Photonics 6(7), 423–431 (2012)ADSCrossRefGoogle Scholar
  9. 9.
    J. Zmojda, M. Kochanowicz, P. Miluski, G.C. Righini, M. Ferrari, D. Dorosz, Investigation of upconversion luminescence in Yb3+/Tm3+/Ho3+ triply doped antimony-germanate glass and double-clad optical fiber. Opt. Mater 58, 279–284 (2016)ADSCrossRefGoogle Scholar
  10. 10.
    A.A. Ansari, R. Yadav, S.B. Rai, Influence of surface coating on structural, morphological and optical properties of upconversion-luminescent LaF3: Yb/Er nanoparticles. Appl. Phys. A 122(7), 1–7 (2016)CrossRefGoogle Scholar
  11. 11.
    A.J.M. Salesa, D.G. Sousaa, H.O. Rodrigues, M.M. Costa, A.S.B. Sombra, F.N.A. Freire, M.J. Soares, M.P.F. Graça, J. Suresh Kumar, Power dependent upconversion in Er3+/Yb3+ co-doped BiNbO4 phosphors. Ceram. Int. 42(6), 6899–6950 (2016)CrossRefGoogle Scholar
  12. 12.
    A.V. Kachynski, A. Pliss, A.N. Kuzmin, T.Y. Ohulchanskyy, A. Baev, J. Qu, P.N. Prasad, Photodynamic therapy by in situ nonlinear photon conversion. Nat. Photonics 8(6), 455–461 (2014)ADSCrossRefGoogle Scholar
  13. 13.
    P.A. Loiko, N.M. Khaidukov, J. Méndez-Ramos, E.V. Vilejshikova, N.A. Skoptsov, K.V. Yumashev, Up- and down-conversion emissions from Er3+ doped K2YF5 and K2YbF5 crystals. J. Lumin 170, 1–7 (2016)CrossRefGoogle Scholar
  14. 14.
    K. Dong, Z. Liu, Z.H. Li, J.S. Ren, X.G. Qu, Hydrophobic anticancer drug delivery by a 980 nm laser-driven photothermal vehicle for efficient synergistic therapy of cancer cells in vivo. Adv. Mater 25(32), 4452–4458 (2013)CrossRefGoogle Scholar
  15. 15.
    G. Sansone, L. Poletto, M. Nisoli, High-energy attosecond light sources. Nat. Photonics 5(11), 655–663 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    J.C. Yu, D.W. Kim, D.B. Kim, E.D. Jung, J.H. Park, A. Lee, B.R. Lee, D.D. Nuzzo, R.H. Friend, M.H. Song, Improving the stability and performance of perovskite light-emitting diodes by thermal annealing treatment. Adv. Mater 28(32), 6906–6913 (2016)CrossRefGoogle Scholar
  17. 17.
    M. Khurana, H.A. Collins, A. Karotki, H.L. Anderson, D.T. Cramb, B.C. Wilson, Quantitative in vitro demonstration of two-photon photodynamic therapy using photofrin and visudyne. Photochem. Photobiol 83(6), 1441–1448 (2007)CrossRefGoogle Scholar
  18. 18.
    A. Pandey, V.K. Rai, Optical thermometry using FIR of two close lying levels of different ions in Y2O3: Ho3+-Tm3+-Yb3+ phosphor. Appl. Phys. B 113(2), 221–225 (2013)ADSCrossRefGoogle Scholar
  19. 19.
    B. Zhou, T. Wei, M.Z. Cai, Y. Tian, J.J. Zhou, D.G. Deng, S.Q. Xu, J.J. Zhang, Analysis on energy transfer process of Ho3+ doped fluoroaluminate glass sensitized by Yb3+ for mid-infrared 2.85 µm emission. J. Quant. Spectrosc. Ra. 149, 41–50 (2014)ADSCrossRefGoogle Scholar
  20. 20.
    V. Lojpur, L. Mancic, P. Vulic, M.D. Dramicanin, M.E. Rabanal, O. Milosevic, Structural, morphological and up-converting luminescence characteristics of nanocrystalline Y2O3: Yb/Er powders obtained via spray pyrolysis. Ceram. Int. 40(2), 3089–3095 (2014)CrossRefGoogle Scholar
  21. 21.
    L. Mancic, V. Lojpur, B.A. Marinkovic, M.H. de Pinho Mauricio, M.D. Dramicanin, O. Milosevic, Effect of processing parameters on structural, morphological and optical Y2O3: Yb3+/Ho3+ powders characteristics. Adv. Powder Technol 25(5), 1449–1454 (2014)CrossRefGoogle Scholar
  22. 22.
    D. Kasprowicz, P. Głuchowski, M.G. Brik, M.M. Makowski, M. Chrunik, A. Majchrowski, Visible and near-infrared up-conversion luminescence of KGd(WO4)2 micro-crystals doped with Er3+, Tm3+, Ho3+, and Yb3+, ions. J. Alloy. Compd 684, 271–281 (2016)CrossRefGoogle Scholar
  23. 23.
    P. Babilas, E. Kohl, T. Maisch, H. Bäcker, B. Gross, A.L. Branzan, W. Bäumler, M. Landthaler, S. Karrer, R.M. Szeimies, In vitro and in vivo comparison of two different light sources for topical photodynamic therapy. Br. J. Dermatol 154(4), 712–718 (2006)Google Scholar
  24. 24.
    A.A.D. Adikaari, I. Etchart, P.H. Guéring, M. Bérard, S.R.P. Silva, A.K. Cheetham, R.J. Curry, Near infrared up-conversion in organic photovoltaic devices using an efficient Yb3+: Ho3+ co-doped Ln2BaZnO5 (Ln = Y, Gd) phosphor. J. Appl. Phys 111(9), 094502 (2012)ADSCrossRefGoogle Scholar
  25. 25.
    J.J. Leal, R. Narro-García, H. Desirena, E. Rodríguez, K. Linganna, E. De la Rosa, Spectroscopic properties of tellurite glasses co-doped with Er3+ and Yb3+. J. Lumin 162, 72–80 (2015)CrossRefGoogle Scholar
  26. 26.
    R. Adhikari, G. Gyawali, S.H. Cho, R. Narro-García, T.S.W. Lee, Er3+/Yb3+ co-doped bismuth molybdate nanosheets upconversion photocatalyst with enhanced photocatalytic activity. J. Solid State Chem 209(2), 74–81 (2014)ADSCrossRefGoogle Scholar
  27. 27.
    H.P. Xia, J.H. Feng, Y.X. Ji, Y.J. Sun, Y. Wang, Z.T. Jia, C.Y. Tu, 2.7 μm emission properties of Er3+/Yb3+/Eu3+: SrGdGa3O7 and Er3+/Yb3+/Ho3+: SrGdGa3O7 crystals. J. Quant. Spectrosc. Ra. 173, 7–12 (2016)ADSCrossRefGoogle Scholar
  28. 28.
    X. Liu, B.J. Chen, E.Y.B. Pun, H. Lin, White upconversion luminescence in Tm3+/Ho3+/Yb3+, triply doped K+-Na+ ion-exchanged aluminum germanate glass channel waveguide. Opt. Mater 35, 590–595 (2013)ADSCrossRefGoogle Scholar
  29. 29.
    A. Amarnath Reddy, S. Surendra Babu, G. Vijaya Prakash, Er3+-doped phosphate glasses with improved gain characteristics for broadband optical amplifiers. Opt. Commun 285, 5364–5367 (2012)ADSCrossRefGoogle Scholar
  30. 30.
    T. Toney Fernandez, M. Hernandez, B. Sotillo, S.M. Eaton, G. Jose, R. Osellame, A. Jha, P. Fernandez, J. Solis, Role of ion migrations in ultrafast laser written tellurite glass waveguides. Opt. Express 22, 15298–15304 (2014)ADSCrossRefGoogle Scholar
  31. 31.
    M.S. Sajna, S. Thomas, K.A. Ann Mary, C. Joseph, P.R. Biju, N.V. Unnikrishnan, Spectroscopic properties of Er3+ ions in multicomponent tellurite glasses. J. Lumin 159, 55–65 (2015)CrossRefGoogle Scholar
  32. 32.
    V.A.G. Rivera, S.P.A. Osorio, D. Manzani, Y. Messaddeq, L.A.O. Nunes, E. Marega Jr., Growth of silver nano-particle embedded in tellurite glass: interaction between localized surface plasmon resonance and Er3+ ions. Opt. Mater 33, 888–892 (2011)ADSCrossRefGoogle Scholar
  33. 33.
    R. Stepien, D. Pysz, I. Kujawa, R. Buczynski, Development of silicate and germanate glasses based on lead, bismuth and gallium oxides for midIR microstructured fibers and microoptical elements. Opt. Mater 35(8), 1587–1594 (2013)ADSCrossRefGoogle Scholar
  34. 34.
    A.I. Chernov, B.I. Denker, R.P. Ermakov, B.I. Galagan, L.D. Iskhakova, S.E. Sverchkov, V.V. Velmiskin, E.M. Dianov, Synthesis and photoluminescent properties of SnO-containing germanate and germanosilicate glasses. Appl. Phys. B 122(9), 243 (2016)ADSCrossRefGoogle Scholar
  35. 35.
    B.T. Dickey, S. Kehoe, D. Boyd, Novel adaptations to zinc-silicate glass polyalkenoate cements: the unexpected influences of germanium based glasses on handling characteristics and mechanical properties. J. Mech. Behav. Biomed. 23, 8–21 (2013)CrossRefGoogle Scholar
  36. 36.
    C.M. Pierlot, L. Kiri, D. Boyd, Effect of Ge/Si ratio on genotoxicity of germanium-containing glass ionomer cements. Mater. Lett 168, 151–154 (2016)CrossRefGoogle Scholar
  37. 37.
    M.K. Murthy, I.P.J. Amp, Some physical properties of alkali germanate glasses. Nature 201, 285–286 (1964)ADSCrossRefGoogle Scholar
  38. 38.
    M.A. Hughes, Z. Suzuki, Y. Ohishi, Compositional dependence of the optical properties of bismuth doped lead-aluminum-germanate glass. Opt. Mater 32(9), 1028–1034 (2010)ADSCrossRefGoogle Scholar
  39. 39.
    M. Kochanowicz, D. Dorosz, J. Zmojda, P. Miluski, J. Dorosz, Effect of temperature on upconversion luminescence in Yb3+/Tb3+ co-doped germanate glass. Acta Phys. Pol. A 124(3), 471–473 (2013)CrossRefGoogle Scholar
  40. 40.
    M. Kochanowicz, D. Dorosz, J. Zmojda, J. Dorosz, J. Pisarska, W.A. Pisarski, Up-conversion luminescence of Tb3+ ions in germanate glasses under diode-laser excitation of Yb3+. Opt. Mater. Express 4(5), 1050–1056 (2014)CrossRefGoogle Scholar
  41. 41.
    K. Godo, K. Niwa, K. Kinoshita, Y. Ichino, T. Zama, Realization of total spectral radiant flux scale at NMIJ with a goniophotometer/spectroradiometer. Metrologia 53(2), 853 (2016)ADSCrossRefGoogle Scholar
  42. 42.
    N. Bai, E. Ip, Y.K. Huang, E. Mateo, F. Yaman, M.J. Li, S. Bickham, S. Ten, J. Liñares, C. Montero, V. Moreno, X. Prieto, V. Tse, K.M. Chung, A.P.T. Lau, H.Y. Tam, C. Lu, Y.H. Luo, G.D. Peng, G.F. Li, T. Wang, Mode-division multiplexed transmission with inline few-mode fiber amplifier. Opt. Express 20(3), 2668–2680 (2012)ADSCrossRefGoogle Scholar
  43. 43.
    K. Chiang, Q. Liu, K.P. Lor, Refractive-index profiling of buried planar waveguides by an inverse Wentzel–Kramer–Brillouin method. J. Lightwave. Technol. 26, 1367–1373 (2008)ADSCrossRefGoogle Scholar
  44. 44.
    S.I. Najafi, Optical behavior of potassium ion-exchanged glass waveguides. Appl. Opt. 27, 3728–3731 (1988)ADSCrossRefGoogle Scholar
  45. 45.
    F. Wang, B.J. Chen, E.Y.B. Pun, H. Lin, Alkaline aluminum phosphate glasses for thermal ion-exchanged optical waveguide. Opt. Mater 42, 484–490 (2015)ADSCrossRefGoogle Scholar
  46. 46.
    L.E. Gortych, D.G. Hall, Fabrication of planar optical waveguides by K+-ion exchange in BK7 and pyrex glass. J. Quantum Electron. QE-22, 892 (1986)Google Scholar
  47. 47.
    H.Y. Li, L.F. Shen, E.Y.B. Pun, H. Lin, Dy3+-doped germinate glasses for waveguide-type radiation light sources. J. Alloy. Compd 64, 586–591 (2015)CrossRefGoogle Scholar
  48. 48.
    C. Joshi, R.N. Rai, S.B. Rai, Structural, thermal, and optical properties of Er3+/Yb3+ co-doped oxyhalide tellurite glasses, glass-ceramics and ceramics. J. Quant. Spectrosc. Ra. 113(6), 397–404 (2012)ADSCrossRefGoogle Scholar
  49. 49.
    F.X. Wang, F. Song, S.X. An, W.S. Wan, H. Guo, S.J. Liu, J.G. Tian, Er3+/Yb3+-codoped phosphate glass for short-length high-gain fiber lasers and amplifiers. Appl. Optics 54, 1198–1205 (2015)ADSCrossRefGoogle Scholar
  50. 50.
    J.L. Zhuang, B.F. Lei, H.R. Zhang, Y.L. Liu, A facile route to the synthesis of sub-5nm monodispersed cubic NaYF4: Yb3+/Er3+ nanocrystals. Mater. Lett 178, 260–263 (2016)CrossRefGoogle Scholar
  51. 51.
    M.S. Figueiredo, F.A. Santos, K. Yukimitu, J.C.S. Moraes, L.A.O Nunes, L.H.C. Andrade, S.M. Lima, On observation of the downconversion mechanism in Er3+/Yb3+ co-doped tellurite glass using thermal and optical parameters. J. Lumin 157, 365–370 (2015)CrossRefGoogle Scholar
  52. 52.
    M. Seshadri, Y.C. Ratnakaram, D. Thirupathi Naidu, K. Venkata Rao, Investigation of spectroscopic properties (absorption and emission) of Ho3+ doped alkali, mixed alkali and calcium phosphate glasses. Opt. Mater 32, 535–542 (2010)ADSCrossRefGoogle Scholar
  53. 53.
    S. Balaji, A.D. Sontakke, R. Sen, K. Annapurna, Efficient ∼2.0 µm emission from Ho3+ doped tellurite glass sensitized by Yb3+ ions: Judd–Ofelt analysis and energy transfer mechanism. Opt. Mater. Express 1(2), 138–150 (2011)Google Scholar
  54. 54.
    P.J. Dereń, D. Sztolberg, B. Brzostowski, B. Bondzior, Spectroscopic properties and Judd–Ofelt analysis of LaAlO3 monocrystal doped with Tm3+ ions. J. Lumin 178, 400–406 (2016)CrossRefGoogle Scholar
  55. 55.
    G. Venkataiah, C.K. Jayasankar, K. Venkata Krishnaiah, P. Dharmaiah, N. Vijaya, Concentration dependent luminescence properties of Sm3+-ions in tellurite-tungsten-zirconium glasses. Opt. Mater 40, 26–35 (2015)CrossRefGoogle Scholar
  56. 56.
    H. Takebe, Y. Nageno, K. Morinaga, Compositional dependence of Judd–Ofelt parameters in silicate, borate, and phosphate glasses. J. Am. Ceram. Soc. 78, 1161–1168 (1995)ADSCrossRefGoogle Scholar
  57. 57.
    S.A. Lopez-Riveraa, J. Martina, A. Florezb, V. Balassone, Band assignments in absorption and photoluminescence of a new transparent fluoroindate glass doped with Er and Yb. J. Lumin 106, 291–299 (2004)CrossRefGoogle Scholar
  58. 58.
    M.P. Hehlen, N.J. Cockroft, T.R. Gosnell, Spectroscopic properties of Er3+-and Yb3+-doped soda-lime silicate and aluminosilicate glasses. Phys. Rev. B 56, 9302–9318 (1997)ADSCrossRefGoogle Scholar
  59. 59.
    H. Desirena, E. De la Rosa, V.H. Romero, J.F. Castillo, L.A. Díaz-Torres, J.R. Oliva, Comparative study of the spectroscopic properties of Yb3+/Er3+ codoped tellurite glasses modified with R2O (R = Li, Na and K). J. Lumin 132(2), 391–397 (2012)CrossRefGoogle Scholar
  60. 60.
    K. Maheshvaran, S. Arunkumar, V. Sudarsan, V. Natarajan, K. Marimuthu, Structural and luminescence studies on Er3+/Yb3+ co-doped boro-tellurite glasses. J. Alloy. Compd 561, 142–150 (2013)CrossRefGoogle Scholar
  61. 61.
    S. Möller, A. Hoffmann, D. Knaut, J. Flottmann, T. Jüstel, Determination of vis and NIR quantum yields of Nd3+-activated garnets sensitized by Ce3+. J. Lumin 158, 365–370 (2015)CrossRefGoogle Scholar
  62. 62.
    S.K.W. MacDougall, A. Ivaturi, J. Marques-Hueso, K.W. Krämer, B.S. Richards, Broadband photoluminescent quantum yield optimisation of Er3+-doped β-NaYF4 for upconversion in silicon solar cells. Sol. Energ. Mat. Sol. C 128, 18–26 (2014)CrossRefGoogle Scholar
  63. 63.
    R.S. Quimby, M.G. Drexhage, M.J. Suscavage, Efficient frequency up-conversion via energy transfer in fluoride glasses. Electron. Lett. 1(23), 32–34 (1987)CrossRefGoogle Scholar
  64. 64.
    H. Lin, E.Y.B. Pun, S.Q. Man, Optical transitions and frequency upconversion of Er3+ ions in Na2O. Ca3Al2Ge3O12 glasses. J. Opt. Soc. Am. B 18(5), 602–609 (2001)ADSCrossRefGoogle Scholar
  65. 65.
    Z.D. Pan, S.H. Morgan, K. Dyer, A. Ueda, H. Liu, Host dependent optical transitions of Er3+ ions in lead-germanate and lead tellurium germanate glasses. J. Appl. Phys 79(12), 8906–8913 (1996)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • C. L. Zhu
    • 1
    • 2
  • E. Y. B. Pun
    • 2
  • Z. Q. Wang
    • 1
  • H. Lin
    • 1
    • 2
  1. 1.School of Textile and Material EngineeringDalian Polytechnic UniversityDalianChina
  2. 2.Department of Electronic Engineering and State Key Laboratory of Millimeter WavesCity University of Hong KongKowloonChina

Personalised recommendations