Skip to main content
Log in

Characterization of dynamic random process using optical vortex metrology

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We propose an innovative approach based on optical vortex metrology (OVM) to characterize a dynamic random process. The dynamic process under consideration involves scatterers within a sample moving stochastically with time evolution. Specifically, the dynamic random process such as white paint drying has been investigated experimentally. In simulations, two unique descriptors, namely the successive survival rate of optical vortices and the average velocity of survival vortices, are introduced to determine the dynamic process based on the uniqueness of the optical vortex. Numerical simulation and experimental results show that these unique descriptors can be used to quantitatively analyze the dynamic process. Furthermore, we have found that further information on the dynamic process can be obtained by the proposed method, thereby facilitating innovative applications using OVM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J.F. Nye, M.V. Berry, Dislocations in wave trains. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 336, 165–190 (1974)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  2. M.V. Berry, M.R. Dennis, Phase singularities in isotropic random waves. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 456, 2059–2079 (2000)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. M.V. Berry, M.R. Dennis, Topological events on wave dislocation lines: birth and death of loops, and reconnection. J. Phys. A: Math. Theor. 40, 65–74 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  4. I. Freund, D.A. Kessler, Singularities in speckled speckle. Opt. Lett. 33, 479–481 (2008)

    Article  ADS  Google Scholar 

  5. J. Leach, M.R. Dennis, J. Courtial, M.J. Padgett, Laser beams: knotted threads of darkness. Nature 432, 165 (2004)

    Article  ADS  Google Scholar 

  6. L. Shi, L. Tian, X. Chen, Characterizing topological charge of optical vortex using non-uniformly distributed multi-pinhole plate. Chin. Opt. Lett. 10, 120501 (2012)

    Article  ADS  Google Scholar 

  7. M. Zurch, C. Kern, P. Hansinger, A. Dreischuh, C. Spielmann, Strong-field physics with singular light beams. Nat. Phys. 8, 743–746 (2012)

    Article  Google Scholar 

  8. K.D. Leake, A.R. Hawkins, H. Schmidt, All-optical particle trap using orthogonally intersecting beams [Invited]. Photonics Res. 1, 47–51 (2013)

    Article  Google Scholar 

  9. Y. Gorodetski, A. Drezet, C. Genet, T.W. Ebbesen, Generating far-field orbital angular momenta from near-field optical chirality. Phys. Rev. Lett. 110, 203906 (2013)

    Article  ADS  Google Scholar 

  10. M.P.J. Lavery, F.C. Speirits, S.M. Barnett, M.J. Padgett, Detection of a spinning object using light’s orbital angular momentum. Science 341, 537–540 (2013)

    Article  ADS  Google Scholar 

  11. W. Wang, S.G. Hanson, Y. Miyamoto, M. Takeda, Experimental investigation of local properties and statistics of optical vortices in random wave fields. Phys. Rev. Lett. 94, 103902 (2005)

    Article  ADS  Google Scholar 

  12. W. Wang, T. Yokozeki, R. Ishijima, A. Wada, Y. Miyamoto, M. Takeda, S.G. Hanson, Optical vortex metrology for nanometric speckle displacement measurement. Opt. Express 14, 120–127 (2006)

    Article  ADS  Google Scholar 

  13. W. Wang, T. Yokozeki, R. Ishijima, M. Takeda, S.G. Hanson, Optical vortex metrology based on the core structures of phase singularities in Laguerre–Gauss transform of a speckle pattern. Opt. Express 14, 10195–10206 (2006)

    Article  ADS  Google Scholar 

  14. W. Wang, M.R. Dennis, R. Ishijima, T. Yokozeki, A. Matsuda, S.G. Hanson, M. Takeda, Poincaré sphere representation for the anisotropy of phase singularities and its applications to optical vortex metrology for fluid mechanical analysis. Opt. Express 15, 11008–11019 (2007)

    Article  ADS  Google Scholar 

  15. W. Wang, M.R. Dennis, R. Ishijima, T. Yokozeki, A. Matsuda, S.G. Hanson, M. Takeda, Fluid mechanics measurement based on the anisotropic core structure of pseudophase singularities in analytic signal representation of speckle pattern. SPIE 6616, 6160W (2007)

    ADS  Google Scholar 

  16. W. Wang, Y. Qiao, R. Ishijima, T. Yokozeki, D. Honda, A. Matsuda, S.G. Hanson, M. Takeda, Constellation of phase singularities in a speckle-like pattern for optical vortex metrology applied to biological kinematic analysis. Opt. Express 16, 13908–13917 (2008)

    Article  ADS  Google Scholar 

  17. G.H. Sendra, H.J. Rabal, R. Arizaga, M. Trivi, Vortex analysis in dynamic speckle images. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 26, 2634–2639 (2009)

    Article  ADS  Google Scholar 

  18. H.J. Rabal, R.A. Braga, Dynamic Laser Speckle and Applications (CRC Press, London, 2008)

    Book  Google Scholar 

  19. A. Federico, G.H. Kaufmann, G.E. Galizzi, H. Rabal, M. Trivi, R. Arizaga, Simulation of dynamic speckle sequences and its application to the analysis of transient processes. Opt. Commun. 260, 493–499 (2006)

    Article  ADS  Google Scholar 

  20. H.J. Rabal, R.A. Arizaga, N.L. Cap, M. Trivi, G. Romero, E. Alanis, Transient phenomena analysis using dynamic speckle patterns. Opt. Eng. 35, 57–62 (1996)

    Article  ADS  Google Scholar 

  21. R. Arizaga, M. Trivi, H. Rabal, Speckle time evolution characterization by the co-occurrence matrix analysis. Opt. Laser Technol. 31, 163–169 (1999)

    Article  ADS  Google Scholar 

  22. S.J. Kirkpatrick, K. Khaksari, D. Thomas, D.D. Duncan, Optical vortex behavior in dynamic speckle fields. J. Biomed. Opt. 17, 050504 (2012)

    Article  ADS  Google Scholar 

  23. H.J. Rabal, N. Cap, M. Trivi, M.N. Guzmán, Q-statistics in dynamic speckle pattern analysis. Opt. Lasers Eng. 50, 855–861 (2012)

    Article  Google Scholar 

  24. D. René et al., Measuring optical phase singularities at subwavelength resolution. J. Opt. A: Pure Appl. Opt. 6, S189 (2004)

    Article  Google Scholar 

  25. I. Passoni, A.D. Pra, H. Rabal, M. Trivi, R. Arizaga, Dynamic speckle processing using wavelets based entropy. Opt. Commun. 246, 219–228 (2005)

    Article  ADS  Google Scholar 

  26. J.W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts & Co., Englewood, 2007)

    Google Scholar 

  27. M.V. Berry, Disruption of wavefronts: statistics of dislocations in incoherent Gaussian random waves. J. Phys. A: Math. Gen. 11, 27–37 (1978)

    Article  ADS  Google Scholar 

  28. X. Li, Y. Tai, Z. Nie et al., Propagation properties of optical vortices in random speckle field based on Fresnel diffraction scheme. Opt. Commun. 287, 6–11 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 61205086).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinzhong Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, X., Tai, Y., Zhang, L. et al. Characterization of dynamic random process using optical vortex metrology. Appl. Phys. B 116, 901–909 (2014). https://doi.org/10.1007/s00340-014-5776-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-014-5776-3

Keywords

Navigation