Skip to main content
Log in

Bose–Einstein condensate on a persistent-supercurrent atom chip

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

A Bose–Einstein condensate was achieved in a stable magnetic trap on a persistent-supercurrent atom chip with a superconducting closed-loop circuit. We determined precisely the shape of the magnetic trapping potential by systematically controlling the persistent supercurrent. The condensation was verified by time-of-flight imaging and by atom number decay measurements. The measured decay rates agreed quantitatively with numerical simulations on the three-body loss process assuming all of the atoms to be a condensate. We also discuss the feasibility of creating a quasi-one-dimensional Bose gas on our atom chip.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J. Reichel, W. Hänsel, T.W. Hänsch, Phys. Rev. Lett. 83, 3398 (1999)

    Article  ADS  Google Scholar 

  2. N.H. Dekker et al., Phys. Rev. Lett. 84, 1124 (2000)

    Article  ADS  Google Scholar 

  3. D. Cassettari, B. Hessmo, R. Folman, T. Maier, J. Schmiedmayer, Phys. Rev. Lett. 85, 5483 (2000)

    Article  ADS  Google Scholar 

  4. R. Folman, P. Krüger, J. Schmiedmayer, J. Denschlag, C. Henkel, Adv. At. Mol. Opt. Phys. 48, 263 (2002)

    Article  ADS  Google Scholar 

  5. S. Schneider et al., Phys. Rev. A 67, 023612 (2003)

    Article  ADS  Google Scholar 

  6. J. Fortágh, C. Zimmermann, Rev. Mod. Phys. 79, 235 (2007)

    Article  ADS  Google Scholar 

  7. C. Henkel, M. Wilkens, Europhys. Lett. 47, 414 (1999)

    Article  ADS  Google Scholar 

  8. C. Henkel, S. Pötting, M. Wilkens, Appl. Phys. B 69, 379 (1999)

    Article  ADS  Google Scholar 

  9. D.M. Harber, J.M. McGuirk, J.M. Obrecht, E.A. Cornell, J. Low. Temp. Phys. 133, 229 (2003)

    Article  ADS  Google Scholar 

  10. M.P.A. Jones, C.J. Vale, D. Sahagun, B.V. Hall, E.A. Hinds, Phys. Rev. Lett. 91, 080401 (2003)

    Article  ADS  Google Scholar 

  11. P.K. Rekdal, S. Scheel, P.L. Knight, E.A. Hinds, Phys. Rev. A 70, 013811 (2004)

    Article  ADS  Google Scholar 

  12. T. Nirrengarten et al., Phys. Rev. Lett. 97, 200405 (2006)

    Article  ADS  Google Scholar 

  13. C. Roux et al., Europhys. Lett. 81, 56004 (2008)

    Article  ADS  Google Scholar 

  14. A. Emmert et al., Eur. Phys. J. D 51, 173 (2009)

    Article  ADS  Google Scholar 

  15. B. Kasch et al., New J. Phys. 12, 065024 (2010)

    Article  ADS  Google Scholar 

  16. F. Shimizu, C. Hufnagel, T. Mukai, Phys. Rev. Lett. 103, 253002 (2009)

    Article  ADS  Google Scholar 

  17. T. Müller et al., New J. Phys. 12, 043016 (2010)

    Article  Google Scholar 

  18. T. Müller et al., Phys. Rev. A 81, 053624 (2010)

    Article  ADS  Google Scholar 

  19. B. Zhang, R. Fermani, T. Müller, M.J. Lim, R. Dumke, Phys. Rev. A 81, 063408 (2010)

    Article  ADS  Google Scholar 

  20. T. Mukai et al., Phys. Rev. Lett. 98, 260407 (2007)

    Article  ADS  Google Scholar 

  21. C. Hufnagel, T. Mukai, F. Shimizu, Phys. Rev. A 79, 053641 (2009)

    Article  ADS  Google Scholar 

  22. S. Hofferberth, I. Lesanovsky, B. Fischer, T. Schumm, J. Schmiedmayer, Nature (London) 449, 324 (2007)

    Article  ADS  Google Scholar 

  23. E. Witkowska, P. Deuar, M. Gajda, K. Rzążewski, Phys. Rev. Lett. 106, 135301 (2011)

    Article  ADS  Google Scholar 

  24. S. Bernon et al., Nat. Commun. 4, 2380 (2013)

    ADS  Google Scholar 

  25. S. Bernon et al. loaded a BEC into a persistent-current trap and measured the long coherence time to be 7.8 s at a magnetic field of 0.3228 mT by two-photon Ramsey interferometry in ref. [24]

  26. J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, J. Akimitsu, Nature (London) 410, 63 (2001)

    Article  ADS  Google Scholar 

  27. D.K. Finnemore, J.E. Ostenson, S.L. Bud’ko, G. Lapertot, P.C. Canfield, Phys. Rev. Lett. 86, 2420 (2001)

    Article  ADS  Google Scholar 

  28. S.L. Li et al., Phys. Rev. B 64, 094522 (2001)

    Article  ADS  Google Scholar 

  29. T. Mukai, M. Yamashita, Phys. Rev. A 70, 013615 (2004)

    Article  ADS  Google Scholar 

  30. T. Shobu, H. Yamaoka, H. Imai, A. Morinaga, M. Yamashita, Phys. Rev. A 84, 033626 (2011)

    Article  ADS  Google Scholar 

  31. E.A. Cornell, J.R. Ensher, C.E. Wieman, in BoseEinstein Condensation in Atomic Gases, in Proceedings of the International School of Physics "Enrico Fermi," Course CXL, IOS Press, Amsterdam, 1999, ed. M. Inguscio, S. Stringari, C.E. Wieman

  32. J. Söding et al., Appl. Phys. B 69, 257 (1999)

    Article  ADS  Google Scholar 

  33. J. Schuster et al., Phys. Rev. Lett. 87, 170404 (2001)

    Article  ADS  Google Scholar 

  34. M.-O. Mewes et al., Phys. Rev. Lett. 78, 582 (1997)

    Article  ADS  Google Scholar 

  35. I. Bloch, T.W. Hänsch, T. Esslinger, Phys. Rev. Lett. 82, 3008 (1999)

    Article  ADS  Google Scholar 

  36. E.A. Burt et al., Phys. Rev. Lett. 79, 337 (1997)

    Article  ADS  Google Scholar 

  37. Y. Kagan, B.V. Svistunov, G.V. Shlyapnikov, JETP Lett. 42, 209 (1985)

    ADS  Google Scholar 

  38. F. Dalfovo, S. Giorgini, L.P. Pitaevskii, S. Stringari, Rev. Mod. Phys. 71, 463 (1999)

    Article  ADS  Google Scholar 

  39. M. Edwards, R.J. Dodd, C.W. Clark, P.A. Ruprecht, K. Burnett, Phys. Rev. A 53, R1950 (1996)

    Article  ADS  Google Scholar 

  40. F. Gerbier, Europhys. Lett. 66, 771 (2004)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We thank F. Shimizu and C. Hufnagel for the initial construction of the experimental setup and fruitful discussions, W. Munro, Y. Tokura, and K. Shimizu for a critical reading of the manuscript, and A. Tsukada and K. Ueda for the MBE growth of MgB2 thin film. This work was supported by JSPS KAKENHI “Grant-in-Aid for Scientific Research (B)”, the MEXT KAKENHI “Quantum Cybernetics" project, and JSPS through its “Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST Program).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiromitsu Imai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Imai, H., Inaba, K., Tanji-Suzuki, H. et al. Bose–Einstein condensate on a persistent-supercurrent atom chip. Appl. Phys. B 116, 821–829 (2014). https://doi.org/10.1007/s00340-014-5768-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-014-5768-3

Keywords

Navigation