Skip to main content
Log in

High precision elimination of angular chirp in CPA laser systems with large stretching factors or high bandwidth

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We present a novel and highly sensitive method to determine the residual angular dispersion of high-power laser pulses after stretching, amplification, and re-compression of the pulses in a chirped-pulse amplification laser system. This method is based on the intentional deflection of a part of the the spectrum within the compressor and aligning the centers of gravity of the two resulting and separated foci with largest possible spectral separation in the far field. Using this technique, we were able to reduce the residual angular dispersion on pulses to less than 0.05 μrad/nm in the vertical plane and less than 0.03 μrad/nm in the horizontal plane, respectively. With this method, it is possible to minimize the deviation of the actual peak intensity for the focused laser pulses to less than 2 % of its theoretical limit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. D. Strickland, G. Mourou, Applications for nuclear phenomena generated by ultra-intense lasers. Opt. Commun. 69, 219–221 (1985)

    Article  ADS  Google Scholar 

  2. M. Roth, T.E. Cowan, M.H. Key, S.P. Hatchett, C. Brown, W. Fountain, J. Johnson, D.M. Pennington, R.A. Snavely, S.C. Wilks, K. Yasuike, H. Ruhl, F. Pegoraro, S.V. Bulanov, E.M. Campbell, M.D. Perry, H. Powell fast ignition by intense laser-accelerated proton beams. Phys. Rev. Lett. 86, 436–439 (2001)

    Article  ADS  Google Scholar 

  3. K.W.D. Ledingham, P. McKenna, R.P. Singhal, Compression of amplified chirped optical pulses. Science 300, 1107–1111 (2003)

    Article  ADS  Google Scholar 

  4. B.M. Hegelich, B.J. Albright, J. Cobble, K. Flippo, S. Letzring, M. Paffett, H. Ruhl, J. Schreiber, R.K. Schulze, J.C. Fernández, Laser acceleration of quasi-monoenergetic MeV ion beams. Nat.. Biotechnol. 439, 441–444 (2006)

    Article  ADS  Google Scholar 

  5. A. Buck, M. Nicolai, K. Schmid, C.M.S. Sears, A. Sävert, J.M. Mikhailova, F. Krausz, M.C. Kaluza, L. Veisz, Real-time observation of laser-driven electron acceleration. Nat. Phys. 7, 543–548 (2011)

    Article  Google Scholar 

  6. K. Osvay, I.N. Ross, On a pulse compressor with gratings having arbitrary orientation. Opt. Commun. 105, 271–280 (1994) (Erratum: Opt. Commun. 110, 390 (1998))

    Google Scholar 

  7. G. Pretzler, A. Kasper, K.J. Witte, Angular chirp and tilted light pulses in CPA lasers. Appl. Phys. B 70, 1–9 (2000)

    Article  ADS  Google Scholar 

  8. K. Osvay, A.P. Kovács, Z. Heiner, G. Kurdi, J. Klebniczki, M. Csatmári, Angular dispersion and temporal change of femtosecond pulses from misaligned pulse compressors. IEEE J. Sel. Top. Quant. Electr. 10, 213–220 (2004)

    Article  Google Scholar 

  9. N. Blanchot, E. Bar, G. Behar, C. Bellet, D. Bigourd, F. Boubault, C. Chappuis, H. Coïc, C. Damiens-Dupont, O. Flour, O. Hartmann, L. Hilsz, E. Hugonnot, E. Lavastre, J. Luce, E. Mazataud, J. Neauport, S. Noailles, B. Remy, F. Sautarel, M. Sautet, C. Rouyer, Experimental demonstration of a synthetic aperture compression scheme for multi-Petawatt high-energy lasers. Opt. Exp. 18, 10088 (2010)

    Article  ADS  Google Scholar 

  10. M. Divoký, P. Straka, Simple two-dimensional-imaging spectrograph with wedged narrow band filters. Rev. Sci. Inst. 79, 123114 (2008)

    Article  ADS  Google Scholar 

  11. K. Varjù, A.P. Kovács, G. Kurdi, K. Osvay, High-precision measurement of angular dispersion in a CPA laser. Appl. Phys. B 74, 259–263 (2002)

    Article  ADS  Google Scholar 

  12. J. Qiao, A. Kalb, M.J. Guardalben, G. King, D. Canning, J.H. Kelly, Large-aperture grating tiling by interferometry for petawatt chirped-pulseamplification systems. Opt. Exp. 15, 9562 (2007)

    Article  ADS  Google Scholar 

  13. M.J. Guardalben, Littrow angle method to remove alignment errors in grating pulse compressors. Appl. Opt. 47(27), 4959–4964 (2008)

    Article  ADS  Google Scholar 

  14. M. Hornung, R. Bödefeld, M. Siebold, A. Kessler, M. Schnepp, R. Wachs, A. Sävert, S. Podleska, S. Keppler, J. Hein, M.C. Kaluza, Temporal pulse control of a multi-10 TW diode-pumped Yb: glass laser. Appl. Phys. B 101, 93–102 (2010)

    Article  ADS  Google Scholar 

  15. S. Keppler, R. Bödefeld, M. Hornung, A. Sävert, J. Hein, M.C. Kaluza, Prepulse suppression in a multi-10-TW diode-pumped Yb:glass laser. Appl. Phys. B 104, 11–16 (2011)

    Article  ADS  Google Scholar 

  16. M. Hornung, R. Bödefeld, M. Schnepp, M. Siebold, J. Hein, R. Sauerbrey, M.C. Kaluza, Alignment of a tiled-grating compressor in a high-power chirped-pulse amplification laser system. Appl. Opt. 46, 7432–7435 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the support by the Bundesministerium für Bildung und Forschung (BMBF) under contract No. 03Z1H531 (onCOOPtics), by the Deutsche Forschungsgemeinschaft (DFG) under contract no. TR 18 and by the European Union (Laserlab Europe).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Bödefeld.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bödefeld, R., Hornung, M., Hein, J. et al. High precision elimination of angular chirp in CPA laser systems with large stretching factors or high bandwidth. Appl. Phys. B 115, 419–426 (2014). https://doi.org/10.1007/s00340-013-5622-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-013-5622-z

Keywords

Navigation