Skip to main content

Trapped rainbow techniques for spectroscopy on a chip and fluorescence enhancement

Abstract

We report on the experimental demonstration of the broadband “trapped rainbow” in the visible range using arrays of adiabatically tapered optical nanowaveguides. Being a distinct case of the slow light phenomenon, the trapped rainbow effect could be applied to optical signal processing, sensing in such applications as spectroscopy on a chip, and to providing enhanced light-matter interactions. As an example of the latter applications, we have fabricated a large area array of tapered nanowaveguides, which exhibit broadband “trapped rainbow” effect. Considerable fluorescence enhancement due to slow light behavior in the array has been observed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Notes

  1. 1.

    http://www.suss-microoptics.com.

References

  1. 1.

    K.L. Tsakmakidis, A.D. Boardman, O. Hess, Nature 450, 397 (2007)

    ADS  Article  Google Scholar 

  2. 2.

    M.I. Stockman, Phys. Rev. Lett. 93, 137404 (2004)

    ADS  Article  Google Scholar 

  3. 3.

    Q. Gan, Y.J. Ding, F.J. Bartoli, Phys. Rev. Lett. 102, 056801 (2009)

    ADS  Article  Google Scholar 

  4. 4.

    L.V. Hau, S.E. Harris, Z. Dutton, C.H. Behroozi, Nature 397, 594 (1999)

    ADS  Article  Google Scholar 

  5. 5.

    Y.A. Vlasov, M. O’Boyle, H.F. Hamann, S.J. McNab, Nature 438, 65 (2005)

    ADS  Article  Google Scholar 

  6. 6.

    I.I. Smolyaninov, V.N. Smolyaninova, A.V. Kildishev, V.M. Shalaev, Phys. Rev. Lett. 103, 213901 (2009)

    ADS  Article  Google Scholar 

  7. 7.

    V.N. Smolyaninova, I.I. Smolyaninov, A.V. Kildishev, V.M. Shalaev, Appl. Phys. Lett. 96, 211121 (2010)

    ADS  Article  Google Scholar 

  8. 8.

    L.D. Landau, E.M. Lifshitz, Quantum Mechanics (Reed, Oxford, 1988)

    Google Scholar 

  9. 9.

    X.P. Zhao, W. Luo, J.X. Huang, Q.H. Fu, K. Song, X.C. Cheng, C.R. Luo, Appl. Phys. Lett. 95, 071111 (2009)

    ADS  Article  Google Scholar 

  10. 10.

    J. Park, K.-Y. Kim, I.-M. Lee, H. Na, S.-Y. Lee, B. Lee, Opt. Express 18, 598 (2010)

    ADS  Article  Google Scholar 

  11. 11.

    Q. Bai, J. Chen, N.-H. Shen, C. Cheng, H.-T. Wang, Opt. Express 18, 2106 (2010)

    ADS  Article  Google Scholar 

  12. 12.

    J.B. Pendry, D. Schurig, D.R. Smith, Science 312, 1780 (2006)

    MathSciNet  ADS  MATH  Article  Google Scholar 

  13. 13.

    A. Pokhriyal, M. Lu, C.S. Huang, S. Schulz, B.T. Cunningham, Appl. Phys. Lett. 97, 121108 (2010)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

V. Smolyaninova acknowledges support of this research by the NSF grants DMR-0348939 and DMR-1104676; V. Shalaev and A. Kildishev acknowledge support by ARO-MURI award 50342-PH-MUR.

Author information

Affiliations

Authors

Corresponding author

Correspondence to V. N. Smolyaninova.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Smolyaninova, V.N., Smolyaninov, I.I., Kildishev, A.V. et al. Trapped rainbow techniques for spectroscopy on a chip and fluorescence enhancement. Appl. Phys. B 106, 577–581 (2012). https://doi.org/10.1007/s00340-011-4856-x

Download citation

Keywords

  • Fluorescence Enhancement
  • Microlens Array
  • Waveguide Array
  • Optical Signal Processing
  • Lens Radius