Advertisement

Applied Physics B

, Volume 106, Issue 3, pp 577–581 | Cite as

Trapped rainbow techniques for spectroscopy on a chip and fluorescence enhancement

  • V. N. SmolyaninovaEmail author
  • I. I. Smolyaninov
  • A. V. Kildishev
  • V. M. Shalaev
Article

Abstract

We report on the experimental demonstration of the broadband “trapped rainbow” in the visible range using arrays of adiabatically tapered optical nanowaveguides. Being a distinct case of the slow light phenomenon, the trapped rainbow effect could be applied to optical signal processing, sensing in such applications as spectroscopy on a chip, and to providing enhanced light-matter interactions. As an example of the latter applications, we have fabricated a large area array of tapered nanowaveguides, which exhibit broadband “trapped rainbow” effect. Considerable fluorescence enhancement due to slow light behavior in the array has been observed.

Keywords

Fluorescence Enhancement Microlens Array Waveguide Array Optical Signal Processing Lens Radius 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

V. Smolyaninova acknowledges support of this research by the NSF grants DMR-0348939 and DMR-1104676; V. Shalaev and A. Kildishev acknowledge support by ARO-MURI award 50342-PH-MUR.

References

  1. 1.
    K.L. Tsakmakidis, A.D. Boardman, O. Hess, Nature 450, 397 (2007) ADSCrossRefGoogle Scholar
  2. 2.
    M.I. Stockman, Phys. Rev. Lett. 93, 137404 (2004) ADSCrossRefGoogle Scholar
  3. 3.
    Q. Gan, Y.J. Ding, F.J. Bartoli, Phys. Rev. Lett. 102, 056801 (2009) ADSCrossRefGoogle Scholar
  4. 4.
    L.V. Hau, S.E. Harris, Z. Dutton, C.H. Behroozi, Nature 397, 594 (1999) ADSCrossRefGoogle Scholar
  5. 5.
    Y.A. Vlasov, M. O’Boyle, H.F. Hamann, S.J. McNab, Nature 438, 65 (2005) ADSCrossRefGoogle Scholar
  6. 6.
    I.I. Smolyaninov, V.N. Smolyaninova, A.V. Kildishev, V.M. Shalaev, Phys. Rev. Lett. 103, 213901 (2009) ADSCrossRefGoogle Scholar
  7. 7.
    V.N. Smolyaninova, I.I. Smolyaninov, A.V. Kildishev, V.M. Shalaev, Appl. Phys. Lett. 96, 211121 (2010) ADSCrossRefGoogle Scholar
  8. 8.
    L.D. Landau, E.M. Lifshitz, Quantum Mechanics (Reed, Oxford, 1988) Google Scholar
  9. 9.
    X.P. Zhao, W. Luo, J.X. Huang, Q.H. Fu, K. Song, X.C. Cheng, C.R. Luo, Appl. Phys. Lett. 95, 071111 (2009) ADSCrossRefGoogle Scholar
  10. 10.
    J. Park, K.-Y. Kim, I.-M. Lee, H. Na, S.-Y. Lee, B. Lee, Opt. Express 18, 598 (2010) ADSCrossRefGoogle Scholar
  11. 11.
    Q. Bai, J. Chen, N.-H. Shen, C. Cheng, H.-T. Wang, Opt. Express 18, 2106 (2010) ADSCrossRefGoogle Scholar
  12. 12.
    J.B. Pendry, D. Schurig, D.R. Smith, Science 312, 1780 (2006) MathSciNetADSzbMATHCrossRefGoogle Scholar
  13. 13.
    A. Pokhriyal, M. Lu, C.S. Huang, S. Schulz, B.T. Cunningham, Appl. Phys. Lett. 97, 121108 (2010) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • V. N. Smolyaninova
    • 1
    Email author
  • I. I. Smolyaninov
    • 2
  • A. V. Kildishev
    • 3
  • V. M. Shalaev
    • 3
  1. 1.Department of Physics Astronomy and GeosciencesTowson UniversityTowsonUSA
  2. 2.Department of Electrical and Computer EngineeringUniversity of MarylandCollege ParkUSA
  3. 3.Birck Nanotechnology Centre, School of Electrical and Computer EngineeringPurdue UniversityWest LafayetteUSA

Personalised recommendations