Skip to main content
Log in

Modeling laser-induced incandescence of soot: enthalpy changes during sublimation, conduction, and oxidation

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

This paper presents an analysis of several equations used to model laser-induced incandescence (LII) of soot. The analysis focuses on sub-models of the change in particle enthalpy during sublimation, conduction, and oxidation. Assuming that pressure is constant, expressing the conductive cooling rate in terms of enthalpy instead of energy, thereby accounting for expansion work, increases the signal decay rate and has an effect comparable to increasing the thermal accommodation coefficient from 0.30 to 0.38. Accounting for oxidative heating decreases the signal decay rate and has an effect comparable to decreasing the accommodation coefficient from 0.30 to 0.25. As an estimate of magnitude of these effects, primary particle sizes inferred from signal decay rates measured at low fluences may be over-predicted by as much as 17% if oxidation is neglected in the model at O2 partial pressures of ∼0.2 bar, under-predicted by 24% if expansion work is neglected, and under-predicted by only 9% if both are neglected. This paper also provides updated parameterizations for average enthalpies of formation, molecular weights, and total pressures of sublimed carbon clusters for use in LII models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.A. Melton, Appl. Opt. 23, 2201 (1984)

    Article  ADS  Google Scholar 

  2. R.J. Santoro, C.R. Shaddix, Laser-Induced Incandescence, in Applied Combustion Diagnostics, ed. by K. Kohse-Höinghaus, J.B. Jeffries (Taylor & Francis, New York, 2002), pp. 252–286

    Google Scholar 

  3. C. Schulz, B.F. Kock, M. Hofmann, H.A. Michelsen, S. Will, B. Bougie, R. Suntz, G.J. Smallwood, Appl. Phys. B 83, 333 (2006)

    Article  ADS  Google Scholar 

  4. H.A. Michelsen, F. Liu, B.F. Kock, H. Bladh, A. Boiarciuc, M. Charwath, T. Dreier, R. Hadef, M. Hofmann, J. Reimann, S. Will, P.-E. Bengtsson, H. Bockhorn, F. Foucher, K.P. Geigle, C. Mounaïm-Rousselle, C. Schulz, R. Stirn, B. Tribalet, R. Suntz, Appl. Phys. B 87, 503 (2007)

    Article  ADS  Google Scholar 

  5. B.F. Kock, B. Tribalet, C. Schulz, P. Roth, Combust. Flame 147, 79 (2006)

    Article  Google Scholar 

  6. F. Liu, D.R. Snelling, Appl. Phys. B 89, 115 (2007)

    Article  ADS  Google Scholar 

  7. M.M. Baum, P.J. Street, Combust. Sci. Technol. 3, 231 (1971)

    Article  Google Scholar 

  8. M. Ishigaki, M. Qu, M. Tokuda, J. Yu, Y. Kawazoe, ISIJ Int. 37, 729 (1997)

    Article  Google Scholar 

  9. R. Hiers, J. Thermophys. Heat Transf. 11, 232 (1997)

    Article  Google Scholar 

  10. R.S. Hiers, J. Thermophys. Heat Transf. 14, 53 (2000)

    Article  Google Scholar 

  11. C.A. Klein, M.J. Berry, P.A. Miles, J. Appl. Phys. 65, 3425 (1989)

    Article  ADS  Google Scholar 

  12. T.K. Risch, J. Appl. Phys. 68, 3011 (1990)

    Article  ADS  Google Scholar 

  13. L.B. Thomas, Thermal Accommodation of Gases on Solids, in Fundamentals of Gas-Surface Interactions, ed. by H. Saltsburg, J.N. Smith, M. Rogers (Academic Press, New York, 1967), pp. 346–369

    Google Scholar 

  14. F.O. Goodman, H.Y. Wachman, Dynamics of Gas-Surface Scattering (Academic Press, New York, 1976)

    Google Scholar 

  15. S.C. Saxena, R.K. Joshi, Thermal Accommodation and Absorption Coefficients of Gases (McGraw-Hill, New York, 1981)

    Google Scholar 

  16. C.J. Dasch, Appl. Opt. 23, 2209 (1984)

    Article  ADS  Google Scholar 

  17. J.C. Batty, R.E. Stickney, J. Chem. Phys. 51, 4475 (1969)

    Article  ADS  Google Scholar 

  18. S.S. Barton, D. Gillespie, B.H. Harrison, Nature 234, 134 (1971)

    Article  ADS  Google Scholar 

  19. E. Vietzke, T. Tanabe, V. Philipps, M. Erdweg, K. Flaskamp, J. Nucl. Mater. 147, 425 (1987)

    Article  Google Scholar 

  20. P. Roth, O. Brandt, S. von Gersum, Proc. Combust. Inst. 23, 1485 (1990)

    Google Scholar 

  21. Z. Du, A.F. Sarofim, J.P. Longwell, C.A. Mims, Energy Fuels 5, 214 (1991)

    Article  Google Scholar 

  22. A.V. Walker, D.A. King, J. Chem. Phys. 112, 1937 (2000)

    Article  ADS  Google Scholar 

  23. C. Li, T.C. Brown, Carbon 39, 725 (2001)

    Article  Google Scholar 

  24. I.M. Bews, A.N. Hayhurst, S.M. Richardson, S.G. Taylor, Combust. Flame 124, 231 (2001)

    Article  Google Scholar 

  25. E.S. Kim, H.C. No, J. Nucl. Mater. 349, 182 (2006)

    Article  ADS  Google Scholar 

  26. A. Refke, V. Philipps, E. Vietzke, J. Nucl. Mater. 250, 13 (1997)

    Article  ADS  Google Scholar 

  27. I. Kamioka, K. Izumi, M. Kitajima, T. Kawabe, K. Ishioka, K. Nakamura, Jpn. J. Appl. Phys. 37, L74 (1998)

    Article  ADS  Google Scholar 

  28. H.A. Michelsen, J. Chem. Phys. 118, 7012 (2003)

    Article  ADS  Google Scholar 

  29. M.W. Chase Jr., J. Phys. Chem. Ref. Data, Mono. 9 14, 535 (1998)

    Google Scholar 

  30. G.J. Smallwood, D. Snelling, F. Liu, Ö.L. Gülder, J. Heat Transf. 123, 814 (2001)

    Article  Google Scholar 

  31. H.R. Leider, O.H. Krikorian, D.A. Young, Carbon 11, 555 (1973)

    Article  Google Scholar 

  32. C.H. Wu, U. Mszanowski, J.M.L. Martin, J. Nucl. Mater. 263, 782 (1998)

    Article  Google Scholar 

  33. H.A. Michelsen, Appl. Phys. B (2008, submitted)

  34. C.P. Fenimore, G.W. Jones, J. Phys. Chem. 71, 593 (1967)

    Article  Google Scholar 

  35. A. Garo, G. Prado, J. Lahaye, Combust. Flame 79, 226 (1990)

    Article  Google Scholar 

  36. R. Puri, R.J. Santoro, K.C. Smyth, Combust. Flame 97, 125 (1994)

    Article  Google Scholar 

  37. I.M. Kennedy, C. Yam, D.C. Rapp, R.J. Santoro, Combust. Flame 107, 368 (1996)

    Article  Google Scholar 

  38. M. Haudiquert, A. Cessou, D. Stepowski, A. Coppalle, Combust. Flame 111, 338 (1997)

    Article  Google Scholar 

  39. B.R. Stanmore, J.F. Brilhac, P. Gilot, Carbon 39, 2247 (2001)

    Article  Google Scholar 

  40. A.M. El-Leathy, C.H. Kim, G.M. Faeth, AIAA J. 42, 988 (2004)

    Article  ADS  Google Scholar 

  41. S. Will, S. Schraml, A. Leipertz, Opt. Lett. 20, 2342 (1995)

    Article  ADS  Google Scholar 

  42. S. Will, S. Schraml, K. Bader, A. Leipertz, Appl. Opt. 37, 5647 (1998)

    Article  ADS  Google Scholar 

  43. B. Mewes, J.M. Seitzman, Appl. Opt. 36, 709 (1997)

    Article  ADS  Google Scholar 

  44. P. Roth, A.V. Filippov, J. Aerosol Sci. 27, 95 (1996)

    Article  Google Scholar 

  45. A.V. Filippov, M.W. Markus, P. Roth, J. Aerosol Sci. 30, 71 (1999)

    Article  Google Scholar 

  46. S. Schraml, S. Dankers, K. Bader, S. Will, A. Leipertz, Combust. Flame 120, 439 (2000)

    Article  Google Scholar 

  47. C. Allouis, A. D’Alessio, C. Noviello, F. Beretta, Combust. Sci. Technol. 153, 51 (2000)

    Article  Google Scholar 

  48. B. Axelsson, R. Collin, P.-E. Bengtsson, Appl. Opt. 39, 3683 (2000)

    Article  ADS  Google Scholar 

  49. B. Axelsson, R. Collin, P.-E. Bengtsson, Appl. Phys. B 72, 367 (2001)

    ADS  Google Scholar 

  50. C. Allouis, F. Rosano, F. Beretta, A. D’Alessio, Meas. Sci. Technol. 13, 401 (2002)

    Article  ADS  Google Scholar 

  51. T. Lehre, H. Bockhorn, B. Jungfleisch, R. Suntz, Chemosphere 51 (2003)

  52. R. Starke, B. Kock, P. Roth, Shock Waves 12, 351 (2003)

    Article  ADS  Google Scholar 

  53. B.F. Kock, T. Eckhardt, P. Roth, Proc. Combust. Inst. 29, 2775 (2002)

    Article  Google Scholar 

  54. B.F. Kock, C. Kayan, J. Knipping, H.R. Orthner, P. Roth, Proc. Combust. Inst. 30, 1689 (2005)

    Article  Google Scholar 

  55. D.R. Snelling, F. Liu, G.J. Smallwood, Ö.L. Gülder. Combust. Flame 136, 180 (2004)

    Article  Google Scholar 

  56. A. Boiarciuc, F. Foucher, C. Mounaïm-Rousselle, Appl. Phys. B 83, 413 (2006)

    Article  ADS  Google Scholar 

  57. T. Schittkowski, B. Mewes, D. Brüggemann, Phys. Chem. Chem. Phys. 4, 2063 (2002)

    Article  Google Scholar 

  58. S.-A. Kuhlmann, J. Reimann, S. Will, J. Aerosol Sci. 37, 1696 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. A. Michelsen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Michelsen, H.A., Linne, M.A., Kock, B.F. et al. Modeling laser-induced incandescence of soot: enthalpy changes during sublimation, conduction, and oxidation. Appl. Phys. B 93, 645–656 (2008). https://doi.org/10.1007/s00340-008-3181-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-008-3181-5

PACS

Navigation