Enhanced magnetoelectric coupling in Bi0.95Mn0.05FeO3–Ni0.5Zn0.5Fe2O4 nanocomposites for spintronic applications

Abstract

Multiferroic nanocomposites with the chemical formula, (x).Bi0.95Mn0.05FeO3-(1-x). Ni0.5Zn0.5Fe2O4, (where x = 0.2, 0.4, 0.5, 0.6, and 0.8) have been synthesized using sol–gel autocombustion and conventional solid-state reaction methods. Resistivity and impedance measurements were taken in order to understand the properties of the conductivity of the samples. Multiple hopping mechanisms were evident from the studies of impedance analysis with the traces of different trends from Nyquist plots. Magnetoelectric (ME) coupling coefficient (αME) studies were taken in order to understand the possible coupling in the synthesized composites. The composites exhibit different values for αME, and it was observed to be varying systematically in accordance with the mixing ratios of the individual constituent phases. Interestingly, the composite with equal ratio (x = 0.5) of both the individual phases shows enhanced value for αME along longitudinal and transverse modes. The observed typical values of αME along the longitudinal and transverse modes are 28.083 mV/cm. Oe and 27.098 mV/cm. Oe, respectively. The possible reasons for the improvement in the coupling factor are well discussed and are attributed to the charge balance along with the structural inhomogeneities prevailed during the formation of the composite. In addition, the observed difference in magnitudes of αME along the longitudinal and transverse modes are also examined and presented in this paper. Improved structural, resistive, impedance and magnetoelectric coupling studies suggest that these composites are well suitable for the applications of spintronic-based devices.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    H. Schmid, Ferroelectrics 162, 317–338 (1994)

    Article  Google Scholar 

  2. 2.

    L.D. Landau, E.M. Lifshitz, Electrodynamics of Continuous Media (Fizmatgiz, Moscow, 1959).

    Google Scholar 

  3. 3.

    I.E. Dzyaloshinskii, Sov. Phys. JETP 10, 628 (1959)

    MathSciNet  Google Scholar 

  4. 4.

    D.N. Astrov, JETP (UURS) 38, 984 (1960)

    Google Scholar 

  5. 5.

    W. Eerenstein et al., Nature 442, 759–764 (2006)

    ADS  Article  Google Scholar 

  6. 6.

    N.A. Hill, J. Phys. Chem. B 104(29), 6694–6709 (2000)

    Article  Google Scholar 

  7. 7.

    M. Fiebig, J. Phys. D: Appl. Phys. 38, 123–152 (2005)

    ADS  Article  Google Scholar 

  8. 8.

    G. Smolenskii et al., Soviet Physics-Solid State 1(1), 150–151 (1959)

    MathSciNet  Google Scholar 

  9. 9.

    J. Wang et al., Science 299, 1719–1722 (2003)

    ADS  Article  Google Scholar 

  10. 10.

    T. Kimura et al., Nature 426(6962), 55–58 (2003)

    ADS  Article  Google Scholar 

  11. 11.

    N. Hur et al., Nature 429, 392–395 (2004)

    ADS  Article  Google Scholar 

  12. 12.

    B. Dhanalakshmi et al., J. Alloys. Compd. 676, 193–201 (2016)

    Article  Google Scholar 

  13. 13.

    B. Dhanalakshmi, et al., Appl. Phys. A 126 (2020) 557(1–9)

  14. 14.

    S. Ramesh et al., Appl. Phys. A 122(11), 984 (2018)

    ADS  Article  Google Scholar 

  15. 15.

    B. Dhanalakshmi et al., Materials Today: Proceed. 2, 3806–3812 (2015)

    Google Scholar 

  16. 16.

    B. Dhanalakshmi et al., J. Magn. Magn. Mater. 404, 119–125 (2016)

    ADS  Article  Google Scholar 

  17. 17.

    B. Dhanalakshmi, et al., Appl. Phys. A 124 (2018) 396 (1–8)

  18. 18.

    B. Dhanalakshmi et al., Phys. B Cond. Mat. 571, 5–9 (2019)

    ADS  Article  Google Scholar 

  19. 19.

    Patri Tirupathi, et al., J.Appl.Phys.117 (2015) 074105 (0–8)

  20. 20.

    B. Dhanalakshmi et al., Ceram. Int. 42, 2186–2197 (2016)

    Article  Google Scholar 

  21. 21.

    http://imageJ.nih.gov

  22. 22.

    J.R. Macdonald, Chemistry 223, 25–50 (1987)

    Google Scholar 

  23. 23.

    S. Pattanayak et al., Ceram. Int. 40, 7983–7991 (2014)

    Article  Google Scholar 

  24. 24.

    R. Thomas et al., J. Phys.: Condens. Matter 22, 423201–423217 (2010)

    Google Scholar 

  25. 25.

    G. Srinivasan et al., Appl. Phys. Lett 86, 222506 (2005)

    ADS  Article  Google Scholar 

  26. 26.

    Y. Lin et al., Appl. Phys. Lett. 112, 072901 (2018)

    ADS  Article  Google Scholar 

  27. 27.

    G. Srinivasan et al., Phys. Rev. B 65, 134402 (2002)

    ADS  Article  Google Scholar 

  28. 28.

    N. Kumar, A. Shukla, R.N.P. Choudhary, J. Mater. Sci. Mater. Electron. 28, 6673–6684 (2017)

    Article  Google Scholar 

  29. 29.

    E. Jartych et al., Nanoscale Res. Lett. 11, 234 (2016)

    ADS  Article  Google Scholar 

  30. 30.

    K. Sadhana et al., J. Appl. Phys. 113, 17C731 (2013)

    Article  Google Scholar 

Download references

Acknowledgement

The authors thank Prof. O.F. Caltun and Dr. I. Dumitru of Romania for making ME coupling coefficient measurements.

Author information

Affiliations

Authors

Corresponding author

Correspondence to B. Dhanalakshmi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vivekananda, K.V., Dhanalakshmi, B., Rao, B.P. et al. Enhanced magnetoelectric coupling in Bi0.95Mn0.05FeO3–Ni0.5Zn0.5Fe2O4 nanocomposites for spintronic applications. Appl. Phys. A 127, 187 (2021). https://doi.org/10.1007/s00339-021-04346-7

Download citation

Keywords

  • Multiferroics
  • Nanocomposites
  • Resistivity
  • Magnetoelectric coupling
  • Impedance studies