Widening of the optical band gap of CdO2(1-X)Al(X) thin films prepared by pulsed laser deposition

Abstract

In this study, doped thin cadmium peroxide films were prepared by pulsed laser deposition with different doping concentrations of aluminium of 0.0, 0.1, 0.3, and 0.5 wt.% for CdO2(1-X)Al(X) and thicknesses in the range of 200 nm. XRD patterns suggest the presence of cubic CdO2 and the texture factor confirms that the (111) plane was the preferential growth plane, where the texture factor and the grain size decreased from 2.02 to 9.75 nm, respectively, in the pure sample to 1.88 and 5.65 nm, respectively, at a concentration of 0.5 wt%. For the predominant growth plane, the deviation of the diffraction angle Δθ and interplanar distance Δd from the standard magnitudes was 2.774° and 0.318 Å, respectively, for the pure sample decreased to − 2.633° and 0.301 Å for the largest doping concentration. The optical absorption was found to decrease with increasing doping concentration, where the changes in threshold wavelengths from the standard λ = 496 nm were blue shifted by Δλ = 142, 133, 128, and 152 nm, respectively, for the concentrations used. The occurrence of such blue shifts points to a widening of the band gap to Eg = 3.5, 3.4, 3.35, and 3.6 eV for concentrations of 0.0, 0.1, 0.3, and 0.5 wt%, respectively.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    E. Campos-Gonzalez, A. Guillén-Cervantes, J. Santoyo-Salazar, O. Zelaya-Angel, L. Ramírez-Velázquez, J. Santos-Cruz, S. Mayén-Hernández, F. de Moure-Flores, M. Olvera, G. Contreras-Puente, Growth of CdO films from CdO2 films by chemical bath deposition: Influence of the concentration of cadmium precursor. Superficies y vacío 28, 25–29 (2015)

    Google Scholar 

  2. 2.

    N.F. Habubi, M.H. Jadduaa, A.Z. Ckal, Fabrication and characterization of CdO2 nanoparticles for solar cells applications. J. Multidiscip. Eng. Sci. Technol. (JMEST) 3, 5427–5433 (2016)

    Google Scholar 

  3. 3.

    X. Han, R. Liu, Z. Xu, W. Chen, Y. Zheng, Room temperature deposition of nanocrystalline cadmium peroxide thin film by electrochemical route. Electrochem. Commun. 7, 1195–1198 (2005)

    Article  Google Scholar 

  4. 4.

    E. Wiberg, A.F. Holleman, N. Wiberg, M. Eagleson, and W. Brewer, (2001) Inorganic Chemistry. Academic Press, London

  5. 5.

    M. Jaduaa, N. Habubi, A. Ckal, Preparation and Study of CdO-CdO2 Nanoparticles for Solar Cells Applications. International Letters of Chemistry, Physics and Astronomy 69, 34–41 (2016)

    Article  Google Scholar 

  6. 6.

    A. De Bonis, R. Teghil, Ultra-short pulsed laser deposition of oxides, borides and carbides of transition elements. Coatings 10, 501–525 (2020)

    Article  Google Scholar 

  7. 7.

    H. Radamson and L. Thylén, (2014) Monolithic Nanoscale Photonics-Electronics Integration in Silicon and Other Group IV Elements. Academic Press, London

  8. 8.

    O.A. Hamadi, Characteristics of CdO—Si heterostructure produced by plasma-induced bonding technique. Proc. Inst. Mech. Eng. Part L: J. Mater.: Des. Appl 222, 65–72 (2008)

    Google Scholar 

  9. 9.

    O.A. Hammadi, Effect of annealing on the electrical characteristics of CdO-Si heterostructure produced by plasma-induced bonding technique. Iraqi J. Appl. Phys 4, 34–37 (2008)

    Google Scholar 

  10. 10.

    O.A. Hammadi, N.E. Naji, Electrical and spectral characterization of CdS/Si heterojunction prepared by plasma-induced bonding. Opt. Quantum Electron 48, 375 (2016)

    Article  Google Scholar 

  11. 11.

    N.B. Hasan, G.H. Mohammed, M.A. AbdulMajeed, Structural and optical properties of (CdO)(SnO2)x Thin films prepared by pulsed laser deposition. Gas 2, 3–4 (2015)

    Google Scholar 

  12. 12.

    R. S. Sirohi (2017) Introduction to Optical Metrology. CRC Press, Boca Raton

  13. 13.

    A. Boukhachem, M. Mokhtari, N. Benameur, A. Ziouche, M. Martínez, P. Petkova, M. Ghamnia, A. Cobo, M. Zergoug, M. Amlouk, Structural optical magnetic properties of Co doped α-MoO3 sprayed thin films. Sens. Actuators A 253, 198–209 (2017)

    Article  Google Scholar 

  14. 14.

    E. Bauer, J.H. van der Merwe, Structure and growth of crystalline superlattices: from monolayer to superlattice. Phys. Rev. B 33, 3657–3671 (1986)

    ADS  Article  Google Scholar 

  15. 15.

    M. Suganya, A. Balu, K. Usharani, Role of substrate temperature on the growth mechanism and physical properties of spray deposited lead oxide thin films. Mater. Sci. Pol. 32, 448–456 (2014)

    ADS  Article  Google Scholar 

  16. 16.

    C. Agashe, B. Marathe, M. Takwale, V. Bhide, Structural properties of SnO2: F films deposited by spray pyrolysis technique. Thin Solid Films 164, 261–264 (1988)

    ADS  Article  Google Scholar 

  17. 17.

    Z. Li, C. Lu, Z. Xia, Y. Zhou, Z. Luo, X-ray diffraction patterns of graphite and turbostratic carbon. Carbon 45, 1686–1695 (2007)

    Article  Google Scholar 

  18. 18.

    N. Manjula, M. Pugalenthi, V. Nagarethinam, K. Usharani, A. Balu, Effect of doping concentration on the structural, morphological, optical and electrical properties of Mn-doped CdO thin films. Mater. Sci. Pol. 33, 774–781 (2015)

    ADS  Article  Google Scholar 

  19. 19.

    G. Kaptay, The Gibbs equation versus the Kelvin and the Gibbs-Thomson equations to describe nucleation and equilibrium of nano-materials. J. Nanosci. Nanotechnol. 12, 2625–2633 (2012)

    Article  Google Scholar 

  20. 20.

    J.A. Thornton, D. Hoffman, Stress-related effects in thin films. Thin Solid Films 171, 5–31 (1989)

    ADS  Article  Google Scholar 

  21. 21.

    C.C. Lee, C.-L. Tien, W.-S. Sheu, C.-C. Jaing, An apparatus for the measurement of internal stress and thermal expansion coefficient of metal oxide films. Rev. Sci. Instrum. 72, 2128–2133 (2001)

    ADS  Article  Google Scholar 

  22. 22.

    R. Rai, T. Triloki, B. Singh, X-ray diffraction line profile analysis of KBr thin films. Appl. Phys. A 122, 774–790 (2016)

    ADS  Article  Google Scholar 

  23. 23.

    I. Yadav, D.S. Ahlawat, Effect of dopant concentration on structural and optical properties of Cd0.7Zn0.3S semiconducting nanocrystals. Mater. Sci. Eng. B 252, 114450 (2020)

    Article  Google Scholar 

  24. 24.

    M. Lv, X. Xiu, Z. Pang, Y. Dai, L. Ye, C. Cheng, S. Han, Structural, electrical and optical properties of zirconium-doped zinc oxide films prepared by radio frequency magnetron sputtering. Thin Solid Films 516, 2017–2021 (2008)

    ADS  Article  Google Scholar 

  25. 25.

    P. Jongnavakit, P. Amornpitoksuk, S. Suwanboon, N. Ndiege, Preparation and photocatalytic activity of Cu-doped ZnO thin films prepared by the sol–gel method. Appl. Surf. Sci. 258, 8192–8198 (2012)

    ADS  Article  Google Scholar 

  26. 26.

    M.H. Nateq, R. Ceccato, Enhanced sol−gel route to obtain a highly transparent and conductive aluminum-doped zinc oxide thin film. Materials 12, 1744 (2019)

    ADS  Article  Google Scholar 

  27. 27.

    L. Pedone, E. Caponetti, M. Leone, V. Militello, V. Pantò, S. Polizzi, M.L. Saladino, Synthesis and characterization of CdS nanoparticles embedded in a polymethylmethacrylate matrix. J. Colloid Interface Sci. 284, 495–500 (2005)

    ADS  Article  Google Scholar 

  28. 28.

    L. Brus, Electronic wave functions in semiconductor clusters: experiment and theory. J. Phys. Chem. 90, 2555–2560 (1986)

    Article  Google Scholar 

  29. 29.

    S.S. Nair, M. Mathews, M. Anantharaman, Evidence for blueshift by weak exciton confinement and tuning of bandgap in superparamagnetic nanocomposites. Chem. Phys. Lett. 406, 398–403 (2005)

    ADS  Article  Google Scholar 

  30. 30.

    K. Saw, N. Aznan, F. Yam, S. Ng, S. Pung, New insights on the burstein-moss shift and band gap narrowing in indium-doped zinc oxide thin films. PLoS ONE 10, e0141180 (2015)

    Article  Google Scholar 

  31. 31.

    M.H. Kabir, M.M. Ali, M.A. Kaiyum, M. Rahman, Effect of annealing temperature on structural morphological and optical properties of spray pyrolized Al-doped ZnO thin films. J. Phys. Commun. 3, 105007 (2019)

    Article  Google Scholar 

  32. 32.

    N. Makori, I. Amatalo, P. Karimi, W. Njoroge, Optical and electrical properties of CdO: Sn thin films for solar cell applications. Int. J. Optoelectron. Eng 4, 11–15 (2014)

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mohammed A. Hameed.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ahmed, A.S., Hameed, M.A. Widening of the optical band gap of CdO2(1-X)Al(X) thin films prepared by pulsed laser deposition. Appl. Phys. A 127, 188 (2021). https://doi.org/10.1007/s00339-021-04338-7

Download citation

Keywords

  • Pulsed laser deposition
  • Cadmium peroxide
  • Thin films
  • Aluminium dopant