Rb(I)/Se(IV) co-dopant into hydroxyapatite; their structural, morphological, and antibacterial effectiveness for biomedical applications

Abstract

Co-substituted hydroxyapatite (HAP) with cationic rubidium (Rb+) and anionic selenite (\({\text{SeO}}_{3}^{2 - }\)) was synthesized at different contributions of Rb+ ions. The chemical formula of the composition is [RbxCa(10–0.5x)(PO4)5(SeO3)(OH)2], where 0 ≤ x ≤ 0.8 with step 0.2. The structure and morphology of the as-prepared compositions were investigated upon the concentration of (Rb+) ions. It was mentioned that the roughness average (Ra) starts from 26.2 nm and grows up, reaching 42.6 nm. This noticeable roughness degree due to Rb insertions is reflected in adhesive ability in the biological environment. Rubidium dopant has a significant effect on particle size that inhibits size growth. The internal porosity could be classified as micropores except at x = 0.6 and 0.8, which are considered macro-pores. Rb/Se-HAP compositions' cell viability was investigated through the human osteoblast cell line (HFB4), and the life ratio achieved around 98.1 ± 3.9%. Furthermore, the additional Rb+ ions promote antibacterial activity, whereas the inhibition zone started from 1.6 ± 0.2 and 1.3 ± 0.3 mm and grew up to 5.3 ± 0.9 and 4.9 ± 0.8 mm for x = 0.0 and 0.8, against E. coli and S. aureus, respectively. Thus, the reported stoichiometric compositions are considered to be promising materials for biomedical applications.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    B. Priyadarshini, U. Vijayalakshmi, In Vitro bioactivity, biocompatibility and corrosion resistance of multi-ionic (Ce/Si) co-doped hydroxyapatite porous coating on Ti-6Al-4 V for bone regeneration applications. Mater. Sci. Eng. C 119, 111620 (2021)

    Article  Google Scholar 

  2. 2.

    S.Q. Wu, S.Z. Ma, C. Zhang, G.Q. Cao, D.J. Wu, C.Z. Gao et al., Cryogel biocomposite containing chitosan-gelatin/cerium-zinc doped hydroxyapatite for bone tissue engineering. Saudi J. Biol. Sci. 27, 2638–2644 (2020)

    Article  Google Scholar 

  3. 3.

    K. Wang, W. Cheng, Z. Ding, G. Xu, X. Zheng, M. Li et al., Injectable silk/hydroxyapatite nanocomposite hydrogels with vascularization capacity for bone regeneration. J. Mater. Sci. Technol. 63, 172–181 (2020)

    Article  Google Scholar 

  4. 4.

    Y.-Q. Tang, Q.-Y. Wang, Q.-F. Ke, C.-Q. Zhang, J.-J. Guan, Y.-P. Guo, Mineralization of ytterbium-doped hydroxyapatite nanorod arrays in magnetic chitosan scaffolds improves osteogenic and angiogenic abilities for bone defect healing. Chem. Eng. J. 387, 124166 (2020)

    Article  Google Scholar 

  5. 5.

    E. Kramer, B. Kunkemoeller, M. Wei, Evaluation of alkaline pre-treatment of PLLA fibers for biomimetic hydroxyapatite coating. Surf. Coat. Technol. 244, 23–28 (2014)

    Article  Google Scholar 

  6. 6.

    W. Cui, X. Li, C. Xie, H. Zhuang, S. Zhou, J. Weng, Hydroxyapatite nucleation and growth mechanism on electrospun fibers functionalized with different chemical groups and their combinations. Biomaterials 31, 4620–4629 (2010)

    Article  Google Scholar 

  7. 7.

    S.F. Mansour, S.I. El-dek, S.V. Dorozhkin, M.K. Ahmed, Physico-mechanical properties of Mg and Ag doped hydroxyapatite/chitosan biocomposites. New J. Chem. 41, 13773–13783 (2017)

    Article  Google Scholar 

  8. 8.

    G. Zuo, X. Wei, H. Sun, S. Liu, P. Zong, X. Zeng et al., Morphology controlled synthesis of nano-hydroxyapatite using polyethylene glycol as a template. J. Alloy. Compd. 692, 693–697 (2017)

    Article  Google Scholar 

  9. 9.

    H. Zhou, M. Yang, S. Hou, L. Deng, Mesoporous hydroxyapatite nanoparticles hydrothermally synthesized in aqueous solution with hexametaphosphate and tea polyphenols. Mater. Sci. Eng. C, Mater. Biol. Appl. 71, 439–445 (2017)

    Article  Google Scholar 

  10. 10.

    S. Zhong, J. Chen, Q. Li, Z. Wang, X. Shi, K. Lin et al., Assembly synthesis of spherical hydroxyapatite with hierarchical structure. Mater. Lett. 194, 1–4 (2017)

    Article  Google Scholar 

  11. 11.

    M.K. Ahmed, S.F. Mansour, M.S. Mostafa, R. Darwesh, S.I. El-dek, Structural, mechanical and thermal features of Bi and Sr co-substituted hydroxyapatite. J. Mater. Sci. 54, 1977–1991 (2018)

    ADS  Article  Google Scholar 

  12. 12.

    M. Šupová, Substituted hydroxyapatites for biomedical applications: a review. Ceram. Int. 41, 9203–9231 (2015)

    Article  Google Scholar 

  13. 13.

    M.E. Zilm, L. Chen, V. Sharma, A. McDannald, M. Jain, R. Ramprasad et al., Hydroxyapatite substituted by transition metals: experiment and theory. Phys. Chem. Chem. Phys. 18, 16457–16465 (2016)

    Article  Google Scholar 

  14. 14.

    X. Zheng, M. Liu, J. Hui, D. Fan, H. Ma, X. Zhang et al., Ln(3+)-doped hydroxyapatite nanocrystals: controllable synthesis and cell imaging. Phys. Chem. Chem. Phys. 17, 20301–20307 (2015)

    Article  Google Scholar 

  15. 15.

    Z. Zhao, M. Espanol, J. Guillem-Marti, D. Kempf, A. Diez-Escudero, M.P. Ginebra, Ion-doping as a strategy to modulate hydroxyapatite nanoparticle internalization. Nanoscale 8, 1595–1607 (2016)

    ADS  Article  Google Scholar 

  16. 16.

    S. Zeng, R. Zhou, X. Zheng, L. Wu, X. Hou, Mono-dispersed Ba 2+ -doped Nano-hydroxyapatite conjugated with near-infrared Cu-doped CdS quantum dots for CT/fluorescence bimodal targeting cell imaging. Microchem. J. 134, 41–48 (2017)

    Article  Google Scholar 

  17. 17.

    G. Zeng, M. Liu, R. Jiang, C. Heng, Q. Huang, L. Mao et al., Surface grafting of Eu3+ doped luminescent hydroxyapatite nanomaterials through metal free light initiated atom transfer radical polymerization for theranostic applications. Mater. Sci. Eng. C, Mater. Biol. Appl. 77, 420–426 (2017)

    Article  Google Scholar 

  18. 18.

    M. Yetmez, Z.E. Erkmen, C. Kalkandelen, A. Ficai, F.N. Oktar, Sintering effects of mullite-doping on mechanical properties of bovine hydroxyapatite. Mater. Sci. Eng. C, Mater. Biol. Appl. 77, 470–475 (2017)

    Article  Google Scholar 

  19. 19.

    K. Shoueir, M.K. Ahmed, S.A. Abdel Gaber, M. El-Kemary, Thallium and selenite doped carbonated hydroxyapatite: Microstructural features and anticancer activity assessment against human lung carcinoma. Ceram. Int. 46, 5201–5212 (2020)

    Article  Google Scholar 

  20. 20.

    A.A. Menazea, S.A. Abdelbadie, M.K. Ahmed, Manipulation of AgNPs coated on selenium/carbonated hydroxyapatite/ε-polycaprolactone nano-fibrous via pulsed laser deposition for wound healing applications. Appl. Surf. Sci. 508, 145299 (2020)

    Article  Google Scholar 

  21. 21.

    S.F. Mansour, S.I. El-dek, M. Ismail, M.K. Ahmed, Structure and cell viability of Pd substituted hydroxyapatite nano particles. Biomed. Phys. Eng. Expr. 4, 045008 (2018)

    Article  Google Scholar 

  22. 22.

    X. Zheng, J. Hui, H. Li, C. Zhu, X. Hua, H. Ma et al., Fabrication of novel biodegradable porous bone scaffolds based on amphiphilic hydroxyapatite nanorods. Mater. Sci. Eng. C, Mater. Biol. Appl. 75, 699–705 (2017)

    Article  Google Scholar 

  23. 23.

    M.K. Ahmed, S.F. Mansour, R. Al-Wafi, S.I. El-dek, V. Uskoković, Tuning the mechanical, microstructural, and cell adhesion properties of electrospun ε-polycaprolactone microfibers by doping selenium-containing carbonated hydroxyapatite as a reinforcing agent with magnesium ions. J. Mater. Sci. 54, 14524–14544 (2019)

    ADS  Article  Google Scholar 

  24. 24.

    M.K. Ahmed, R. Ramadan, S.I. El-dek, V. Uskoković, Complex relationship between alumina and selenium-doped carbonated hydroxyapatite as the ceramic additives to electrospun polycaprolactone scaffolds for tissue engineering applications. J. Alloy. Compd. 801, 70–81 (2019)

    Article  Google Scholar 

  25. 25.

    M.K. Ahmed, S.F. Mansour, R. Al-Wafi, M. Afifi, V. Uskokovic, Gold as a dopant in selenium-containing carbonated hydroxyapatite fillers of nanofibrous epsilon-polycaprolactone scaffolds for tissue engineering. Int. J. Pharm. 577, 118950 (2020)

    Article  Google Scholar 

  26. 26.

    A. Zaharia, V. Muşat, E.M. Anghel, I. Atkinson, O.C. Mocioiu, M. Buşilă, V.G. Pleşcan, Biomimetic chitosan-hydroxyapatite hybrid biocoatings for enamel remineralization. Cer. Int. 43(14), 11390–11402 (2017)

    Article  Google Scholar 

  27. 27.

    R.A. Youness, M.A. Taha, H. Elhaes, M. Ibrahim, Molecular modeling, FTIR spectral characterization and mechanical properties of carbonated-hydroxyapatite prepared by mechanochemical synthesis. Mater. Chem. Phys. 190, 209–218 (2017)

    Article  Google Scholar 

  28. 28.

    N. Vargas-Becerril, D.A. Sánchez-Téllez, L. Zarazúa-Villalobos, D.M. González-García, M.A. Álvarez-Pérez, C. de León-Escobedo, L. Téllez-Jurado, Structure of biomimetic apatite grown on hydroxyapatite (HA). Cer. Int. 46(18), 28806–28813 (2020)

    Article  Google Scholar 

  29. 29.

    V.K. Thakur, M.K. Thakur, M.R. Kessler, Handbook of Composites from Renewable Materials, Biodegradable Materials, vol. 5 (Wiley, New Jersey, 2017).

    Google Scholar 

  30. 30.

    T. Albrektsson, C. Johansson, Osteoinduction, osteoconduction and osseointegration. Eur Spine J 10, 5 (2001)

    Google Scholar 

  31. 31.

    V. Uskoković, Ion-doped hydroxyapatite: An impasse or the road to follow? Ceram. Int. 46, 11443–11465 (2020)

    Article  Google Scholar 

  32. 32.

    M. Toledano, R. Osorio, M. Vallecillo-Rivas, E. Osorio, C.D. Lynch, F.S. Aguilera et al., Zn-doping of silicate and hydroxyapatite-based cements: Dentin mechanobiology and bioactivity. J. Mech. Behav. Biomed. Mater. 114, 104232 (2020)

    Article  Google Scholar 

  33. 33.

    Y. Zou, R. Xie, E. Hu, P. Qian, B. Lu, G. Lan et al., Protein-reduced gold nanoparticles mixed with gentamicin sulfate and loaded into konjac/gelatin sponge heal wounds and kill drug-resistant bacteria. Int. J. Biol. Macromol. 148, 921–931 (2020)

    Article  Google Scholar 

  34. 34.

    M.K. Ahmed, A.M. Moydeen, A.M. Ismail, M.E. El-Naggar, A.A. Menazea, M.H. El-Newehy, Wound dressing properties of functionalized environmentally biopolymer loaded with selenium nanoparticles. J. Mol. Struct. 1225, 129138 (2021)

    Article  Google Scholar 

  35. 35.

    C. Oprea, P.J. Szalanski, M.V. Gustova, I.A. Oprea, V. Buzguta, Multivariate comparison of elemental concentrations in human teeth. Appl. Rad. Isot. : Incl. Data, Instr. Methods Use Agric., Ind. Med. 67, 2142–2145 (2009)

    Article  Google Scholar 

  36. 36.

    A.A. Menazea, A.M. Abdelghany, N.A. Hakeem, W.H. Osman, F.H. Abd El-kader, Nd: YAG nanosecond laser pulses for precipitation silver nanoparticles in silicate glasses: AC conductivity and dielectric studies. Silicon 12(1), 13–20 (2020)

    Article  Google Scholar 

  37. 37.

    C. Rodriguez-Valencia, M. Lopez-Alvarez, B. Cochon-Cores, I. Pereiro, J. Serra, P. Gonzalez, Novel selenium-doped hydroxyapatite coatings for biomedical applications. J. Biomed. Mater. Res., Part A 101, 853–861 (2013)

    Article  Google Scholar 

  38. 38.

    Y. Wang, J. Ma, L. Zhou, J. Chen, Y. Liu, Z. Qiu et al., Dual functional selenium-substituted hydroxyapatite. Interface Focus 2, 378–386 (2012)

    Article  Google Scholar 

  39. 39.

    F. Monteil-Rivera, M. Fedoroff, J. Jeanjean, L. Minel, M.G. Barthes, J. Dumonceau, Sorption of selenite (SeO(3)(2-)) on hydroxyapatite: an exchange process. J. Coll. Interface Sci. 221, 291–300 (2000)

    ADS  Article  Google Scholar 

  40. 40.

    A.M. Abdelghany, A.A. Menazea, A.M. Ismail, Synthesis, characterization and antimicrobial activity of Chitosan/Polyvinyl Alcohol blend doped with Hibiscus Sabdariffa L. extract. J. Mol. Struct. 1197, 603–609 (2019)

    ADS  Article  Google Scholar 

  41. 41.

    A.A. Menazea, A.M. Abdelghany, N.A. Hakeem, W.H. Osman, F.H. Abd El-kader, Precipitation of silver nanoparticles in borate glasses by 1064 nm Nd: YAG nanosecond laser pulses: characterization and dielectric studies. J. Electr. Mater. 49(1), 826–832 (2020)

    ADS  Article  Google Scholar 

  42. 42.

    J.J. Faust, W. Christenson, K. Doudrick, R. Ros, T.P. Ugarova, Development of fusogenic glass surfaces that impart spatiotemporal control over macrophage fusion: direct visualization of multinucleated giant cell formation. Biomaterials 128, 160–171 (2017)

    Article  Google Scholar 

  43. 43.

    S.F. Mansour, S.I. El-Dek, M.K. Ahmed, Physico-mechanical and morphological features of zirconia substituted hydroxyapatite nano crystals. Sci. Rep. 7, 43202 (2017)

    ADS  Article  Google Scholar 

  44. 44.

    I.S. Elashmawi, A.A. Menazea, Different time’s Nd:YAG laser-irradiated PVA/Ag nanocomposites: structural, optical, and electrical characterization. J. Mater. Res. Technol. 8, 1944–1951 (2019)

    Article  Google Scholar 

  45. 45.

    A.M. Ismail, A.A. Menazea, H.A. Kabary, A.E. El-Sherbiny, A. Samy, The influence of calcination temperature on structural and antimicrobial characteristics of zinc oxide nanoparticles synthesized by Sol-Gel method. J. Mol. Struct. 1196, 332–337 (2019)

    ADS  Article  Google Scholar 

  46. 46.

    L. Wei, D. Pang, L. He, C. Deng, Crystal structure analysis of selenium-doped hydroxyapatite samples and their thermal stability. Ceram. Int. 43, 16141–16148 (2017)

    Article  Google Scholar 

  47. 47.

    B. Moreno-Perez, Z. Matamoros-Veloza, J.C. Rendon-Angeles, K. Yanagisawa, A. Onda, J.E. Pérez-Terrazas et al., Synthesis of silicon-substituted hydroxyapatite using hydrothermal process. Boletín de la Sociedad Española de Cerámica y Vidrio 59, 50–64 (2020)

    Article  Google Scholar 

  48. 48.

    M.K. Ahmed, S.F. Mansour, M.S. Mostafa, R. Darwesh, S.I. El-dek, Structural, mechanical and thermal features of Bi and Sr co-substituted hydroxyapatite. J. Mater. Sci. 54, 1977–1991 (2019)

    ADS  Article  Google Scholar 

  49. 49.

    Kaviya M, Ramakrishnan P, Mohamed SB, Ramakrishnan R, Gimbun J, Veerabadran KM, et al. (2020) Synthesis and characterization of nano-hydroxyapatite/graphene oxide composite materials for medical implant coating applications. Materials Today: Proceedings.

  50. 50.

    M.K. Ahmed, S.F. Mansour, R. Al-Wafi, M. Afifi, V. Uskoković, Gold as a dopant in selenium-containing carbonated hydroxyapatite fillers of nanofibrous ε-polycaprolactone scaffolds for tissue engineering. Int. J. Pharm. 577, 118950 (2020)

    Article  Google Scholar 

  51. 51.

    Z. Song, Y. Liu, J. Shi, T. Ma, Z. Zhang, H. Ma et al., Hydroxyapatite/mesoporous silica coated gold nanorods with improved degradability as a multi-responsive drug delivery platform. Mater. Sci. Eng., C 83, 90–98 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for supporting this work through research groups program under Grant number R.G.P.1/180/41

Author information

Affiliations

Authors

Corresponding authors

Correspondence to M. K. Ahmed or M. Afifi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Awwad, N.S., Ahmed, M.K., Afifi, M. et al. Rb(I)/Se(IV) co-dopant into hydroxyapatite; their structural, morphological, and antibacterial effectiveness for biomedical applications. Appl. Phys. A 127, 194 (2021). https://doi.org/10.1007/s00339-021-04337-8

Download citation

Keywords

  • Hydroxyapatite
  • antibacterial
  • Cell viability
  • Selenite
  • Rb