Tuning of magnetic properties and multiferroic nature: case study of cobalt-doped NdFeO3


Nanocrystalline NdFe1-xCoxO3 (0 ≤ x ≤ 0.4) samples have been synthesized by a sol–gel auto-combustion route. Rietveld refinement of x-ray diffraction patterns of the samples confirms the single-phase orthorhombic structure with space group Pbnm-\({D}_{2h}^{16}\). Williamson–Hall analysis is carried out to evaluate the average crystallite size and lattice strain. Raman scattering spectra indicate compressive strain with blueshift in doped samples. The particles that appeared in FESEM micrographs are found to be approximately spherical in shape, and the average size lies in the range of 32–58 nm. Pore radius and surface area of the powders have been determined by BET method. The room-temperature magnetic studies reveal a strong antiferromagnetic behavior with weak ferromagnetism due to Dzyaloshinskii–Moriya (D–M) exchange interaction mechanism. Cobalt doping enhances the magnitude of magnetization in NdFeO3 sample. The maximum magnetization (Mmax) is achieved to be 1.209 emu/g for 10% cobalt-doped sample. The deconvolution of M–H loop in ferromagnetic and antiferromagnetic parts has been performed. Room-temperature polarization–electric field (P–E) loops at different applied electric fields suggest the typical ferroelectric nature of all the samples. Maximum polarization (Pm) is found to be 1.09 μC/cm2 for x = 0.2 sample at 50 kV field. Temperature-dependent P–E loops exhibit an increase in coercive field (Ec) and polarization (P) with the increase in temperature, and this behavior indicates the growth in energy barrier for domain reorientation. Pore radius, density, and particle size have been correlated with magnetic and electrical properties of the nanocrystalline samples.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.


  1. 1.

    C. Tongyun, S. Liming, L.I.U. Feng, Z.H.U. Weichang, NdFeO3 as anode material for S/O2 solid oxide fuel cells. J. Rare Earths 30, 1138–1141 (2012). https://doi.org/10.1016/S1002-0721(12)60194-X

    Article  Google Scholar 

  2. 2.

    T.G. Ho, T.D. Ha, Q.N. Pham, H.T. Giang, T.A. Thu Do, N.T. Nguyen, Nanosized perovskite oxide NdFeO3 as material for a carbon-monoxide catalytic gas sensor. Adv. Nat. Sci. Nanosci. Nanotechnol. 2, 015012 (2011). https://doi.org/10.1088/2043-6262/2/1/015012

    ADS  Article  Google Scholar 

  3. 3.

    Y.J. Hao, B. Li, R.H. Liu, F.T. Li, Synthesis of NdFeO3 Perovskites in a Reverse Microemulsion and its Visible Light Photocatalytic Activity, In: Advanced Research on Material Engineering, Chemistry, Bioinformatics, Trans Tech Publications Ltd, 2011: pp. 593–596. doi:https://doi.org/10.4028/www.scientific.net/AMR.282-283.593.

  4. 4.

    S. Geller, Crystal structure of gadolinium orthoferrite, GdFeO3. J. Chem. Phys. 24, 1236–1239 (1956). https://doi.org/10.1063/1.1742746

    ADS  Article  Google Scholar 

  5. 5.

    L. Chen, T. Li, S. Cao, S. Yuan, F. Hong, J. Zhang, The role of 4f-electron on spin reorientation transition of NdFeO3: a first principle study. J. Appl. Phys. 111, 103905 (2012). https://doi.org/10.1063/1.4716187

    ADS  Article  Google Scholar 

  6. 6.

    M.A. Peña, J.L.G. Fierro, Chemical structures and performance of perovskite oxides. Chem. Rev. 101, 1981–2018 (2001). https://doi.org/10.1021/cr980129f

    Article  Google Scholar 

  7. 7.

    N. Aparnadevi, K. Saravana Kumar, M. Manikandan, D. Paul Joseph, C. Venkateswaran, Room temperature dual ferroic behaviour of ball mill synthesized NdFeO3 orthoferrite. J. Appl. Phys. 120, 034101–034108 (2016). https://doi.org/10.1063/1.4954842

    ADS  Article  Google Scholar 

  8. 8.

    A.G. Gavriliuk, I.A. Troyan, R. Boehler, M.I. Eremets, Electronic and structural transitions in NdFeO3 orthoferrite under high pressures. JETP Lett. 77, 747–752 (2003)

    Article  Google Scholar 

  9. 9.

    A. Somvanshi, S. Husain, W. Khan, Investigation of structure and physical properties of cobalt doped nano-crystalline neodymium orthoferrite. J. Alloy. Compd. 778, 439–451 (2019). https://doi.org/10.1016/j.jallcom.2018.11.095

    Article  Google Scholar 

  10. 10.

    R. Przeniosto, I. Sosnowska, P. Fischer, Magnetic moment ordering of Nd3+ ions in NdFeO3. J. Magn. Magn. Mater. 140144, 2153–2154 (1995)

    ADS  Article  Google Scholar 

  11. 11.

    S. Yuan, Y. Wang, M. Shao, F. Chang, B. Kang, Y. Isikawa, S. Cao, Magnetic properties of NdFeO3 single crystal in the spin reorientation region. J. Appl. Phys. 109, 07E141 (2011). https://doi.org/10.1063/1.3562259

    Article  Google Scholar 

  12. 12.

    O. Polat, M. Coskun, F.M. Coskun, J. Zlamal, B.Z. Kurt, Z. Durmus, M. Caglar, A. Turut, Co doped YbFeO3: exploring the electrical properties via tuning the doping level. Ionics 25, 4013–4029 (2019). https://doi.org/10.1007/s11581-019-02934-5

    Article  Google Scholar 

  13. 13.

    J. Mizusaki, Y. Mima, S. Yamauchi, K. Fueki, H. Tagawa, Nonstoichiometry of the perovskite-type oxides La1−xSrxCoO3−δ. J. Solid State Chem. 80, 102–111 (1989). https://doi.org/10.1016/0022-4596(89)90036-4

    ADS  Article  Google Scholar 

  14. 14.

    K.D. Mandal, L. Behera, The electrical properties of the system GdCo1-xFexO3 synthesized by chemical route x = 0.10, 0.20. J. Mech. Behav. Mater. 15, 13–26 (2004). https://doi.org/10.1515/JMBM.2004.15.1-2.13

    Article  Google Scholar 

  15. 15.

    J. Shanker, G. Narsinga Rao, K. Venkataramana, D. Suresh Babu, Investigation of structural and electrical properties of NdFeO3 perovskite nanocrystalline. Phys. Lett. A 382, 2974–2977 (2018). https://doi.org/10.1016/j.physleta.2018.07.002

    ADS  Article  Google Scholar 

  16. 16.

    M.D. Luu, N.N. Dao, D. Van Nguyen, N.C. Pham, T.N. Vu, T.D. Doan, A new perovskite-type NdFeO3 adsorbent: synthesis, characterization, and As(V) adsorption. Adv. Nat. Sci. Nanosci. Nanotechnol. 7, 025015 (2016). https://doi.org/10.1088/2043-6262/7/2/025015

    ADS  Article  Google Scholar 

  17. 17.

    M. Khorasani-Motlagh, M. Noroozifar, M. Yousefi, S. Jahani, Chemical synthesis and characterization of perovskite NdFeO3 nanocrystals via a co-precipitation method. Int. J. Nanosci. Nanotechnol. 9, 7–14 (2013)

    Google Scholar 

  18. 18.

    Z. Zhou, L. Guo, H. Yang, Q. Liu, F. Ye, Hydrothermal synthesis and magnetic properties of multiferroic rare-earth orthoferrites. J. Alloy Compd. 583, 21–31 (2014). https://doi.org/10.1016/j.jallcom.2013.08.129

    Article  Google Scholar 

  19. 19.

    Y. Wang, X. Yan, J. Chen, J. Deng, R. Yu, X. Xing, Shape controllable synthesis of NdFeO3 micro single crystals by a hydrothermal route. CrystEngComm 16, 858 (2014). https://doi.org/10.1039/c3ce41434e

    Article  Google Scholar 

  20. 20.

    J. Agus, S. Samnur, K. Triyana, E.H. Sujiono, Effect of Sintering temperature on crystal structure and surface morphology of NdFeO3 oxide alloy materials prepared by solid reaction method. In: Functional materials and technologies, Trans Tech Publications Ltd, pp. 158–162 (2019) doi:https://doi.org/10.4028/www.scientific.net/KEM.811.158.

  21. 21.

    S. Husain, A.O.A. Keelani, Structural properties and Williamson-Hall analysis of Mn doped SmFeO3. Mater. Today Proc. 5, 5615–5622 (2018). https://doi.org/10.1016/j.matpr.2017.12.153

    Article  Google Scholar 

  22. 22.

    P. Bindu, S. Thomas, Estimation of lattice strain in ZnO nanoparticles: X-ray peak profile analysis. J. Theor. Appl. Phys. 8, 123–134 (2014). https://doi.org/10.1007/s40094-014-0141-9

    ADS  Article  Google Scholar 

  23. 23.

    V.M. Goldschmidt, Die Gesetze der Krystallochemie. Die Naturwissenschaften. 14, 477–485 (1926). https://doi.org/10.1007/BF01507527

    ADS  Article  Google Scholar 

  24. 24.

    S. Manzoor, S. Husain, A. Somvanshi, M. Fatema, N. Zarrin, Exploring the role of Zn doping on the structure, morphology, and optical properties of LaFeO3. Appl. Phys. A 3, 1–11 (2019). https://doi.org/10.1007/s00339-019-2806-3

    Article  Google Scholar 

  25. 25.

    S. Chanda, S. Saha, A. Dutta, T.P. Sinha, Raman spectroscopy and dielectric properties of nanoceramic NdFeO3. Mater. Res. Bull. 48, 1688–1693 (2013). https://doi.org/10.1016/j.materresbull.2012.12.075

    Article  Google Scholar 

  26. 26.

    S. Manzoor, S. Husain, Analysis of Zn substitution on structure, optical absorption, magnetization, and high temperature specific heat anomaly of the nano-crystalline LaFeO3. J. Appl. Phys. 124, 065110 (2018). https://doi.org/10.1063/1.5025252

    ADS  Article  Google Scholar 

  27. 27.

    M.K. Singh, H.M. Jang, H.C. Gupta, R.S. Katiyar, Polarized Raman scattering and lattice eigenmodes of antiferromagnetic NdFeO3. J. Raman Spectrosc. 39, 842–848 (2008). https://doi.org/10.1002/jrs

    ADS  Article  Google Scholar 

  28. 28.

    A. Wu, G. Cheng, H. Shen, J. Xu, Y. Chu, Z. Ge, Preparation of ReFeO3 nanocrystalline powders by auto-combustion of Citric Acid gel. Asia-Pac. J. Chem. Eng. 4, 518–521 (2009). https://doi.org/10.1002/apj

    Article  Google Scholar 

  29. 29.

    M.C. Weber, M. Guennou, H.J. Zhao, Raman spectroscopy of rare-earth orthoferrites RFeO3 (R=La, Sm, Eu, Gd, Tb, Dy). Phys. Rev. B. 214103, 1–8 (2016). https://doi.org/10.1103/PhysRevB.94.214103

    Article  Google Scholar 

  30. 30.

    W.G. Schmidt, F. Bechstedt, III-V(110) surface dynamics from an ab initio frozen-phonon approach. Phys. Rev. B. 52, 2001–2007 (1995). https://doi.org/10.1103/PhysRevB.52.2001

    ADS  Article  Google Scholar 

  31. 31.

    E. Anastassakis, A. Cantarero, M. Cardona, Piezo-Raman measurements and anharmonic parameters in silicon and diamond. Phys. Rev. B. 41, 7529–7535 (1990). https://doi.org/10.1103/PhysRevB.41.7529

    ADS  Article  Google Scholar 

  32. 32.

    I.H. Campbell, P.M. Fauchet, The effects of microcrystal size and shape on the one phonon Raman spectra of crystalline semiconductors. Solid State Commun. 58, 739–741 (1986)

    ADS  Article  Google Scholar 

  33. 33.

    C. Shivakumara, A.K. John, S. Behera, N. Dhananjaya, R. Saraf, Photoluminescence and photocatalytic properties of Eu3+ -doped ZnO nanoparticles synthesized by the nitrate-citrate gel combustion method. Eur. Phys. J. Plus. 132, 1–14 (2017). https://doi.org/10.1140/epjp/i2017-11304-5

    Article  Google Scholar 

  34. 34.

    S. Yin, T. Sauyet, M.S. Seehra, M. Jain, Particle size dependence of the magnetic and magneto-caloric properties of HoCrO3. J. Appl. Phys. 121, 063902 (2017). https://doi.org/10.1063/1.4975405

    ADS  Article  Google Scholar 

  35. 35.

    S. Brunauer, P.H. Emmett, E. Teller, Adsorption of Gases in Multimolecular Layers. J. Am. Chem. Soc. 60, 309–319 (1938). https://doi.org/10.1021/ja01269a023

    ADS  Article  Google Scholar 

  36. 36.

    M.V. Khedkar, S.B. Somvanshi, A.V. Humbe, K.M. Jadhav, Surface modified sodium silicate based superhydrophobic silica aerogels prepared via ambient pressure drying process. J. Non-Cryst. Solids 511, 140–146 (2019). https://doi.org/10.1016/j.jnoncrysol.2019.02.004

    ADS  Article  Google Scholar 

  37. 37.

    T. Xie, H. Shen, A. Wu, P. Man, L. Su, Z. Shi, J. Xu, Crystal growth, spin reorientation and magnetic anisotropy of YFe0.8Mn0.2O3 single crystal. Solid State Commun. 247, 64–67 (2016). https://doi.org/10.1016/j.ssc.2016.08.018

    ADS  Article  Google Scholar 

  38. 38.

    J. Kang, X. Cui, Y. Fang, J. Zhang, Magnetic properties and spin reorientation of perovskite SmFe0.5Mn0.5O3 single crystal. Solid State Commun. 248, 101–104 (2016). https://doi.org/10.1016/j.ssc.2016.09.018

    ADS  Article  Google Scholar 

  39. 39.

    D. Treves, Studies on orthoferrites at the Weizmann Institute of Science. J. Appl. Phys. 36, 1033 (1965). https://doi.org/10.1063/1.1714088

    ADS  Article  Google Scholar 

  40. 40.

    J. Bartolome, E. Palacios, M.D. Kuzmin, F. Bartolome, I. Sosnowska, R. Przeniosło, R. Sonntag, M.M. Lukina, Single-crystal neutron diffraction study of Nd magnetic ordering in NdFeO3 at low temperature. Phys. Rev. B 55, 11432–11441 (1997). https://doi.org/10.1103/PhysRevB.55.11432

    ADS  Article  Google Scholar 

  41. 41.

    R. Przeniosło, I. Sosnowska, B. Frick, Nuclear ordering and excitations in NdFeO3. J. Magn. Magn. Mater. 305, 186–190 (2006). https://doi.org/10.1016/j.jmmm.2005.12.011

    ADS  Article  Google Scholar 

  42. 42.

    S.C. Parida, S.K. Rakshit, Z. Singh, Heat capacities, order–disorder transitions, and thermodynamic properties of rare-earth orthoferrites and rare-earth iron garnets. J. Solid State Chem. 181, 101–121 (2008). https://doi.org/10.1016/j.jssc.2007.11.003

    ADS  Article  Google Scholar 

  43. 43.

    W. Sławiński, R. Przeniosło, I. Sosnowska, E. Suard, Spin reorientation and structural changes in NdFeO3. J. Phys. Condens. Matter 17, 4605–4614 (2005). https://doi.org/10.1088/0953-8984/17/29/002

    ADS  Article  Google Scholar 

  44. 44.

    S.W. Cheong, M. Mostovoy, Multiferroics: A magnetic twist for ferroelectricity. Nat. Mater. 6, 13–20 (2007). https://doi.org/10.1038/nmat1804

    ADS  Article  Google Scholar 

  45. 45.

    M. Toru, Anisotropic superexchange interaction and weak ferromagnetism. Phys. Rev. 120, 91–98 (1960). https://doi.org/10.1103/PhysRev.120.91

    Article  Google Scholar 

  46. 46.

    T. Murtaza, M.S. Khan, J. Ali, T. Hussain, K. Asokan, Structural, electrical and magnetic properties of multiferroic NdFeO3–SrTiO3 composites. J. Mater. Sci. Mater. Electron. 29, 18573–18580 (2018). https://doi.org/10.1007/s10854-018-9975-2

    Article  Google Scholar 

  47. 47.

    S. Duhalde, M.F. Vignolo, F. Golmar, Appearance of room-temperature ferromagnetism in Cu-doped TiO2- films. Phys. Rev. B 72, 20–23 (2005). https://doi.org/10.1103/PhysRevB.72.161313

    Article  Google Scholar 

  48. 48.

    Y. Tokunaga, N. Furukawa, H. Sakai, Y. Taguchi, T. Arima, Y. Tokura, Composite domain walls in a multiferroic perovskite ferrite. Nat. Mater. 8, 558–562 (2009). https://doi.org/10.1038/nmat2469

    ADS  Article  Google Scholar 

  49. 49.

    K.K. Bamzai, M. Bhat, Electrical and magnetic properties of some rare earth orthoferrites (RFeO3 where R = Y, Ho, Er) systems. Integr. Ferroelectr. 158, 108–122 (2014). https://doi.org/10.1080/10584587.2014.957591

    Article  Google Scholar 

  50. 50.

    A. Mcdannald, L. Kuna, M. Seehra, M. Jain, Magnetic exchange interactions of rare-earth-substituted DyCrO3 bulk powders. Phys. Rev. B 91, 1–8 (2015). https://doi.org/10.1103/PhysRevB.91.224415

    Article  Google Scholar 

  51. 51.

    I.A. Sergienko, E. Dagotto, Role of the Dzyaloshinskii-Moriya interaction in multiferroic perovskites. Phys. Rev. B 73, 1–5 (2006). https://doi.org/10.1103/PhysRevB.73.094434

    Article  Google Scholar 

  52. 52.

    H. Naganuma, Y. Inoue, S. Okamura, Evaluation of ferroelectric hysteresis loops of leaky multiferroic BiFeO3 films using a system with a high driving frequency of 100 kHz system. J. Ceram. Soc. Jpn. 118, 656–658 (2010). https://doi.org/10.2109/jcersj2.118.656

    Article  Google Scholar 

  53. 53.

    B. Rajeswaran, P. Mandal, R. Saha, E. Suard, A. Sundaresan, C.N.R. Rao, Ferroelectricity induced by cations of nonequivalent spins disordered in the weakly ferromagnetic perovskites, YCr1-xMxO3 (M = Fe or Mn). Chem. Mater. 24, 3591–3595 (2012). https://doi.org/10.1021/cm301944s

    Article  Google Scholar 

  54. 54.

    W. Wang, W. Sun, G. Zhang, Z. Cheng, Y. Wang, Magnetic domain-wall induced ferroelectric polarization in rare-earth orthoferrites AFeO3 (A = Lu, Y, Gd): First-principles calculations. J. Mater. Chem. C 7, 10059–10065 (2019). https://doi.org/10.1039/c9tc02501d

    Article  Google Scholar 

Download references


The authors are grateful to Ms. Babli Debnath, Department of Physics, Tripura University, Tripura, for providing FESEM facilities and to Mr. Sandeep B. Somvanshi, Department of Physics, BAMU, Aurangabad, for BET measurements. One of the authors, A. Somvanshi is thankful to UGC-DAE Consortium for Scientific Research, Mumbai, for financial support under the project CRS-M-271.

Author information



Corresponding author

Correspondence to Shahid Husain.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Somvanshi, A., Husain, S., Manzoor, S. et al. Tuning of magnetic properties and multiferroic nature: case study of cobalt-doped NdFeO3. Appl. Phys. A 127, 174 (2021). https://doi.org/10.1007/s00339-021-04329-8

Download citation


  • Rietveld refinement
  • Williamson–Hall analysis
  • Raman spectroscopy
  • Field emission scanning electron microscopy (FESEM)
  • Brunauer–Emmett–Teller (BET) analysis
  • Magnetization
  • Polarization